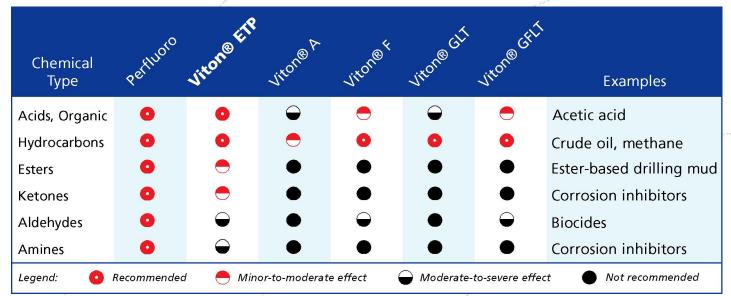
Parco 9166-75 Fluorocarbon Seals

Need a Less Expensive Alternative to Perfluoroelastomers?

Regular fluorocarbon seals don t adequately resist harsh chemicals, but perfluoroelastomers are expensive. Now, Parco s 9166-75 fluorocarbon seals offer a less expensive alternative made from DuPont s polymer, Viton[®] Extreme[™] (ETP).

Seals used in oil field, automotive, and aerospace applications are regularly exposed to chemicals that can cause them to extrude from their gland. Parco s 9166-75 seals provide excellent resistance to acids, hydrocarbons, esters, keytones, and other caustic fluids. Parco s 9166-75 seals have these features:


Superior chemical resistance

Our 9166-75 seals swell significantly less in various fluids than seals made from DuPont polymers, Viton[®] A, F, GLT, and GFLT (see Figure 1).

Exceptional value

Our 9166-75 seals offer reliable service similar to a perfluoroelastomer in aggressive chemicals, but at a fraction of the cost.

Fig. 1:

9166-75 Viton® ETP Seals Offer Similar Chemical Resistance to Perfluoroelastomers

Viton[®] is a trade name of DuPont Performance Elastomers.

Key Features

Parco's 9166-75 fluorocarbon seals are an economical choice for applications requiring broad chemical resistance. Key features include the following:

• Superior chemical resistance:

Parco 9166-75 seals showed superior chemical resistance to seals made from DuPont polymers, Viton® A, F, GLT, and GFLT.

• Wide range of service temperatures:

Parco 9166-75 seals are suitable for applications ranging from -20 to +400°F.

• Exceptional value:

Parco 9166-75 seals are available at a fraction of the cost of perfluoroelastomers.

• Color:

Parco 9166-75 seals are blue.

Typical Values for Compound 9166-75 75-Durometer Fluorocarbon – Viton[®] Extreme[™] (ETP)

Section of	Diversional Development	Denning	Typical	ASTM
Spec.	Physical Property	Requirement'	Value	Test Method
Z1	Original Properties Hardness, Shore A Tensile strength, MPa (psi), min. Ultimate elongation, pct., min.	75 ± 5 10(1450) 175	71 14.3(2072) 300	D2240 D412 D412
Basic	Fluid Aging, IRM 903 Oil 70 hours at 150°C (302°F) Volume change, pct., max.	10	3	D471
A1-10	Heat Aging 70 hours at 250°C (482°F) Hardness change, pts., Shore A, max. Tensile strength change, pct., max. Ultimate elongation change, pct., max.	10 -25 -25	0 2 17	D573
B37	Compression Set, Plied 22 hours at 175°C (347°F) Pct. of original deflection, max.	50	29	D395 Method B
B38	Compression Set, Plied 22 hours at 200°C (392°F) Pct. of original deflection, max.	50	30	D395 Method B
EF31	Fluid Aging, Fuel C 70 hours at 23°C (73°F) Hardness change, pts., Shore A Tensile strength change, pct., max. Ultimate elongation change, pct., max. Volume change, pct.	±5 -25 -20 0 to 10	-2 -15 4 4	D471
EO78	Fluid Aging, Service Liquid 101 70 hours at 200°C (392°F) Hardness change, pts., Shore A Tensile strength change, pct., max. Ultimate elongation change, pct., max. Volume change, pct.	-15 to 5 -40 -20 0 to 15	-4 17 17 5	D471
Z2	Low Temperature Flexibility TR-10, °C (°F)	Report	-7(19)	D1329

¹Compound 9166-75 meets the requirements shown above for ASTM D2000 M2HK710 A1-10 B37 B38 EF31 EO78 Z1 Z2.

Source: Parco Test Report 7992.

Parco, Inc., 1801 S. Archibald Ave., Ontario, CA 91761 909-947-2200 Fax 909-923-0288 parcoinc.com