

Your Partner for Sealing Technology

Contents

Sealing System Examples	3
Turcon [®] Seal Materials	11
Turel [®] Elastomer Materials	14
Aerospace Hydraulic Fluids	16
Surface Finish (Recommendations)	17
Surface Finish (Measurement Methods)	21
Hardware Specifications	24
FEA Analyses	28
Seal Quick Reference Guide	29
Selection Criteria for Aerospace Seals	30
Hardware Dimensions per MIL-G-5514F and AS4716, Bore	36
Hardware Dimensions per MIL-G-5514F and AS4716, Rod	40
Turcon [®] VL Seal [®]	44
Turcon [®] Plus Seal [®] II	50
Turcon [®] Double Delta [®] II	54
Turcon [®] Wedgpak [®]	56
Turcon [®] Hatseal [®] II	59
Turcon [®] T-Seal	62
Turcon [®] AQ-Seal [®] 5 (For use in MIL-Standard Grooves)	65
Turcon [®] Variseal [®]	68
Turcon [®] Back-up Ring (BUR)	79
Seals manufactured to MIL-G-5514F (Rod and Bore Sizes Only)	
Turcon [®] Dual Piston Ring	82
Turcon [®] Glyd Ring [®] - For use with MIL-G-5514F/AS4716 Rod/Bore	85
Turcon [®] Stepseal [®] K	91
Turcon [®] Roto Glyd Ring [®] - For use with MIL-G-5514F/AS4716 Rod/Bore	98
Turcon [®] Varilip [®]	100
Seals for Boeing Gland Standard BACS11AA	102
Footseal II	103

Selection of the Scraper Element	104
Turcon [®] DC Scraper Ring	105
Turcon [®] Excluder [®] DC, Series E	106
Turcon [®] Excluder [®] DC	107
Turcon [®] Variseal [®] M2S Scraper	111
Turcite [®] Slydring [®] /Luytex [®] Slydring [®]	114
Turcon® Wedgpak® Face Seal	118
Installation Instructions	123
Quality Criteria	127
Storage	128
Customer Approvals	129
Technical Questionaire	131

Sealing System Examples

Typical Hydraulic Equipment using Shamban Systems

In each individual case the type of system should be selected based on criteria such as friction, leakage, and cost. In the following examples we have mentioned the main features for each system as a guideline; however, the section describing the individual product should always be consulted to ensure that all operational requirements are fulfilled.

Utility Actuator Systems: Rod Applications

For general purpose hydraulic actuators, Shamban offers a variety of simple and reliable sealing systems:

Figure 1 Standard Rod Sealing System

The Wedgpak[®] and Excluder[®]DC standard sealing system (Fig. 1) is a simple and effective solution that combines long life with good leakage control. The Wedgpak[®] is an easy to install, foolproof design, offering excellent leakage control.

The Excluder[®]DC is superior to the older garter spring energized scraper because it utilizes an uncut scraper ring and is sealed off by an O-Ring on the static side.

Figure 2 Alternative System I

The Grooved Plus Seal[®]II (Fig. 2) can be substituted for the Wedgpak[®] in cases where an elastomeric contact seal is not suitable due to high speeds or long rest periods for the actuator. This seal has nearly the same leakage control, but since it is a slipper seal, speeds of up to 15 m/s (49 ft/s) are acceptable and adhesion is eliminated. The grooves on the dynamic seal surface provide pockets where the hydraulic fluid can accumulate and lubricate the seal, therefore increasing seal life.

Figure 3 Alternative System II

VL Seal[®] (Fig. 3) is a good alternative for applications where a dry rod is critical (and typical slipper seals allow too much leakage). VL Seal[®] is designed to pump any leakage back into the system. A double acting scraper such as the Excluder[®]DC is used in order to prevent leakage out of the system at the rod end. The VL Seal[®] /Excluder[®]DC system has the advantage of being extremely leaktight with a surface finish at max. Ra 0.2 µm.

Note. Recommendations for **Groove Distance**, see figure 123 page 104.

Utility Actuator Systems: Piston Applications

Piston systems are typically simpler than rod systems. They must be of symetrical design to cope with the changing direction of the fluid pressure.

Figure 4 Turcon[®] Dual Piston Ring

Where controlled leakage is permissible, the Dual Piston Ring offers a good, reliable, low friction seal in a narrow groove width.

Figure 5 Turcon[®] Grooved Plus Seal[®]II

Where leakage is critical, the Grooved Plus ${\sf Seal}^{\textcircled{B}}{\sf II}$ is widely used and has excellent wear characteristics.

Figure 6 Turcon[®] Glyd Ring[®]

The Turcon[®] Glyd Ring[®] is a simple, reliable and costeffective slipper seal that is worthwhile considering as an alternative to the Plus Seal[®]II if MIL-G-5514F gland design is not mandatory.

Figure 7 Turcon[®] Wedgpak[®]

The Wedgpak is a "zero" leakage elastomer contact seal with outstanding dynamic performance and easy installation.

Advanced Actuator Systems: Primary Flight Controls Rod Applications with Dual Unvented Seals

With the increased use of fly-by-wire technology, most primary flight controls use a dual unvented sealing system in order to meet the high performance and long life requirement.

Figure 8 High Frequency System

The tandem VL Seal[®] combines the low friction characteristics of the slipper seal with a leaktight performance. The dual edge Excluder[®]DC closes the leakage by low pressure and static stand-by operations.

Although the Hatseal[®]II and the Wedgpak[®] have been used for many years for high frequency systems, the tandem VL Seal[®] system provides increased reliability and can survive high frequency dither stroke applications with increased service life.

Rod Applications with Pressure Relieving Seals

In some cases an interstage pressure build-up can be experienced in a dual unvented sealing system. The following factors are contributing to this phenomenon:

- Stroke frequency
- Stroke length
- Pressure variation
- Extrusion gap
- Surface finish
- Oil viscosity
- Temperature

The following systems are designed to allow the interstage pressure build-up to be relieved back into the system , when the system pressure drops or in the case of the Stepseal[®]K during the retract stroke of the rod.

Figure 9 System with Pressure Relieving Plus Seal[®]PR

The Plus Seal[®]PR is capable of relieving any interstage pressure.

The Plus Seal[®] PR is easily fitted into existing grooves as a retrofit if a pressure build-up is noticed, requires a careful installation.

Figure 10 System with Pressure Relieving VL Seal®

Pressure relieving can also be achieved by using the VL Seal[®] as a primary seal. The sealing lip will lift if the back pressure exceeds approximately 10 bars (145 psi).

VL Seal[®]/Wedgpak[®] configuration offers the optimum pressure relieving seal system, due to the VL Seal[®] design. Pressure trapped in between the two seals is prevented from leaking through by the elastomer contact of the Wedgpak[®] and the slight tilt of the VL Seal[®] caused by backpressure, allowing the oil back into the circuit.

Advanced Actuator Systems, i.e.: Primary Flight Controls Piston Applications

The piston seals in a flight control are working under less severe conditions than the rod seals because they are well lubricated by the oil.

Figure 11 Turcon[®] Dual Piston Ring

Where controlled leakage is acceptable, the Dual Piston Ring offers a good reliable low friction solution in a narrow groove with minimum hysteresis.

Figure 12 Turcon[®] Grooved Plus Seal[®]II

Where leakage is critical, the Grooved Plus Seal[®]II is widely used and has excellent wear characteristics. In flight controls we recommend Back-up Rings with the Plus Seal[®]II.

Landing Gear Shock Struts

For smaller diameter shock struts, the Hatseal $^{\textcircled{B}}$ II/ Excluder $^{\textcircled{B}}$ DC has proven to be a cost effective solution due to the long service life.

Figure 13 Small Diameter Shock Strut

Figure 14 Large Landing Gear with Installed Spare Seal

For medium sized landing gear, it is an advantage to use a tandem sealing system with by-pass around the inboard seal. This means that initially the pressure drop is over the outboard seal, and the inboard seal runs in a lubricated environment. When a leakage is detected, the by-pass can be closed and operations continue on the inboard seal until the next scheduled overhaul. On landing gears where severe shock strut deflection can be expected, the use of Slydring[®] is recommended to avoid scoring caused by metal-to-metal contact of the moving parts.

For large diameter landing gear where heavy deformations and high pressure shocks may occur, it is essential to use a slipper seal without elastomer contact to

provide the necessary service life. The use of Luytex[®] Slydring[®] are critical to good performance because metal-to-metal contact is avoided.

Tandem sealing systems represent the ultimate sealing solution for landing gear, with the new Series 600 cross section, and there is room for it. The Turcon[®] VL Seal[®] as the primary seal to take up the peak and pulsation pressure, protecting the Turcon[®] Hatseal[®]II as the leaktight performer with the lip. Both seal designs are considered the superior strut seals and the combination of the seal designs will only improve the performance.

Shamban seals and bearings are among others used for the following Landing Gear applications:

A320, A380/340 B737, B747, B757 and B767, ATP, F-5, Eurofighter, J31, HS748, Spitfire, EMB 145, PC7 and PC9.

Rotary Vane Sealing System

A rotary vane sealing system consists of a rectangular cap seal with a centerplate, and an O-Ring to energize and seal between the chambers. The corner seal can be designed in various shapes to control the leakpath between chambers and rod. The Turcon[®] Wedgpak[®] is positioned as rotary seal with a small elastomer contact to prevent leakage even at low pressure. Finally the Excluder[®]DC prevents contamination from entering the system. If space is available, a Slydring[®] is recommended between the rod seal and the Excluder[®]DC.

Please consult your Shamban sales engineer for further recommendations.

Figure 17 Rotary Actuator Sealing System

Accumulators

The Turcon[®] AQ-Seal[®]5 is a leak-tight, long-lasting piston seal. The use of Slydring[®] is recommended to avoid leakage resulting from piston misalignment with the bore.

Figure 18 Accumulator Sealing Systems. Application Example: Sikorsky H60

Spool Valves

Reduced gland width can be achieved by using a Turcon[®] Glyd Ring[®] internally, and a Turcon[®] Wedgpak[®] with elastomer contact to prevent external leakage.

Figure 19 Spool Valve Sealing Systems. Application Example: IPTN

Brakes

Brake pistons equipped with a spring energized Turcon[®] Variseal[®]H to take pressure and temperature variation, combined with the tight and efficient Turcon[®]Excluder[®]DC, Series E, have proven to be very reliable. The advantage of using Variseal[®] (spring energized Turcon[®] jackets) instead of elastomer contact or energized seals is that brake systems often exceed the temperature capability of the elastomer. Spring energized seals can go from -100°C/-148°F to +260°C/500°F, and metallic springs address most fluid compatility problems.

The Spring Liner protects the brake housing from wear and abrasion from the spring.

Figure 20 Brake Sealing System. Application Example: F-16 A/B

Turcon[®] Seal Materials

Turcon[®] materials are carefully formulated proprietary blends and are based on premium-grade PTFE fluoropolymer resins. Fillers are added that improve seal material properties. Fillers improve wear extrusion, resistance and high-temperature properties of Turcon[®]. The key features of Turcon[®] seal materials are as follows:

Low Friction

Turcon[®] materials exhibit the lowest coefficient of friction of any known solid, as low as 0.04 unlubricated on polished steel. The friction values obtained under lubricated conditions will be smaller. A unique property is the very low static coefficient of friction of Turcon[®] which results in extremely low breakout friction. Turcon[®] materials do not adhere to their mating surfaces, therefore eliminating any worries about stick-slip in dynamic applications.

Chemical Compatibility

Turcon[®] materials are chemically inert in essentially all industrial chemicals and solvents, even at elevated temperatures and pressures. A single Turcon[®] material can handle an extremely wide range of solvents, acids, or other corrosive media.

Temperature Range

Turcon[®] materials can operate at service temperatures from -196°C /320°F up to 260°C /500°F, (even further under special conditions) but it is necessary to limit other working conditions, such as speed and pressure, when the temperature reaches the limit.

Temperature Cycling

In elastomeric seals, temperature cycling causes material degradation leading to compression-set of the elastomer. Turcon[®] material properties, however, are not altered by cycling temperatures. Turcon[®] also does not contain plasticizers or any other ingredients which could degrade at temperatures below 300°C (572°F).

High Surface Speed

Turcon[®] materials generate far less heat than other materials, such as elastomer, polyurethane, etc. In general, surface speed can go up to 15 m/s, depending upon seal design and working conditions. Speed exceeding 20 m/s has been achieved under special conditions.

Aging

Turcon[®] properties do not significantly change over time. Turcon[®] does not age and will not embrittle or degrade when exposed to severe-weathering conditions of heat, light, water, salt spray, etc. This is useful when seals might sit idle for years and still be required to perform with complete reliability.

Resilience

Turcon[®] materials may experience "cold flow" or creep under continued thermal or mechanical stress because they do not have the resilience of elastomers. Consequently, Turcon[®] materials require an external-loading device such as a metal spring or an elastomer. This is required to provide the radial force which compensates for seal wear, cold flow, and the normal variations in gland dimensions due to tolerances or eccentricity.

Wear Resistance

Turcon[®] materials are formulated to enhance wear life at high speeds, pressures, and temperatures through the addition of fillers such as carbon fiber, glass fiber, molybdenum disulphide and others. Turcon[®] materials achieve wear values that exceed the demands of many difficult sealing environments.

Radiation

Turcon[®] is not recommended for an accumulated radiation dose above 7×10^2 Gy (7×10^4 rad). The large flourine molecules in the PTFE chain make good targets for radioactive particles. The molecular-chain structure is damaged by scissure when exposed to radiation, resulting in lowered tensile strength and eventual disintegration. In high-radiation service, other fluoropolymers such as EFTE and PCTFE or Zurcon[®] materials are recommended.

Polytetrafluoroethylene (PTFE) Properties

Since Turcon[®] materials are based on premium-grade PTFE resins, the general properties of PTFE may be of further interest. PTFE has excellent electric properties such as a low dielectric constant and a very high dieletric strength, even at elevated temperatures. PTFE will not sustain fire in pure oxygen. Virgin PTFE is physiologically inert.

The water absorption of PTFE is 0.01%. PTFE does not absorb fluid to a level worth mentioning other than fluorinated-cooling media (e.g. Freon). Fluorinated fluids can cause a reversible weight increase of approximately 5% accompanied by dimensional increases of approximately 1%.

Material Data

All Turcon[®] Materials are made of a high grade composition of Polytetrafluoroethylene (PTFE) resin and processed in an isostatic molding process.

The following list includes the standard Turcon[®] materials, but a large number of other materials are available and will be specified when required by the working conditions. The materials are tested at 23°C (73.4°F)

Material Code	I Description and Color		Tensile Strength		Elonga- tion at break	Specific Gravity	Hardness
Turcon®			ASTM D [MPa]	ASTM D 4894 [psi]	ASTM D 4894 [%]	ASTM D 792 [g/cm ³]	ASTM D 2240 [Shore D]
T 01	Virgin, exceeding MIL-R-8791 Profile: Clean system, low friction and pressure Surface: Steel and chrome	White to Off-white	42.3	6130	378	2.16	58
T05	Turcon [®] . Profile: All systems, low friction, medium lifetime and pressure Surface: Steel and chrome		39.2	5682	392	2.17	57
T10*	Additive: Carbon and graphite Profile: Dry system, poor lubrication. Large extrusion gap Surface: Steel, chrome		21.9	3180	183	2.05	64
T19	Additive: Mineral fibers and MoS2 T19 Profile: High pressure and long wear life Surface: Steel, chrome and ceramic		24.2	3506	226	2.30	63
T25	Additive: Glass fibers and MoS ₂ Profile: Rotary application Surface: Hardened steel, chrome and ceramic		31.5	4562	286	2.23	59
T29	Additive: Carbon fibers high filled Profile: Long wearlife and large extrusion gap Surface: Steel and chrome		22.1	3208	217	2.01	61
T40	Additive: Carbon fibers medium filled Profile: Long wearlife Surface: Aluminum, Steel and chrome	Gray	24.7	3579	241	2.06	60
T47	Additive: Bronze medium filled Profile: Bearing and Slydring [®] Surface: Steel and chrome	Light to dark brown	27.6	4000	250	3.09	60
T49	Additive: Bronze medium filled acid treated Profile: Extrusion resistant Surface: Hardened steel and chrome	Gray	27.6	4000	250	3.10	63
T 99	Additive: MoS ₂ Profile: Low friction, medium pressure, long seal life Surface: Steel, chrome and anodized aluminum	Gray	37.2	5385	347	2.22	58

Note ! The values in Table I are nominals, intended for engineering reference only. These values are not to be used as a specification requirement. Specification values are available upon request.

* Turcon[®] T11, used in North America is equivalent to Turcon[®] T10.

Table II Zurcon[®] Materials

Material Code	Description				Tensile Strength		Elongation at break	Specific Gravity	Hardness
_			ASTM	D 638	ASTM D 638	ASTM D 792	ASTM D 785		
Zurcon®			[MPa]	[psi]	[%]	[g/cm ³]	[Shore R]		
Z48	Proprietary Polyester Leaktight performance Steel and chrome (Formerly Zurcon [®] 448)	Uniform black	44.1	6.400	550	1.20	-		
Z60	Polyamide and MoS ₂ Spec. T-Seal and corner reinforcement Steel and chrome (Formerly HiMod [®] 60)	Gray	82.7	12.000	50	1.16	120		
Zurcon [®]			ASTM D 1457 [MPa]	ASTM D 1457 [psi]	ASTM D 1457 [%]	ASTM D 621 (Deformation @ 2.000 psi 73°F/24 hrs)	ASTM D 785 [M Scale]		
Z43	High modulus thermo plastics + PTFE + Carbon Bearing, Stakbak [®] and corner reinforcement Steel, chrome and ceramic (Formerly HiMod [®] 552)	Uniform black	81.0	11.750	25	0.08%	95		

Note: The testing of tensile properties are based on the microtensile specimen per ASTM D 1457/D 4894, pulled at 2 inches per minute with an initial jaw separation at 0.875 ± .005 inches. Tensile properties are determined in accordance with the procedures described in ASTM D 638.

Note ! The values in Table II are nominals, intended for engineering references only. These values are not to be used as a specification requirement. Specified values can only be obtained from each batch.

Turel[®] Elastomer Materials

Many of the Shamban seal designs are composite seals with an elastomer element as an integral part of the seal. For this reason it is very important that we are in control of such important seal design parameters as elastomer swell, shrinkage during molding, compression set, compatibility and tolerances.

Through extensive testing in our own test laboratory we make sure that our materials are manufactured to our specifications. A number of the materials have also been approved for a QPL as part of a US Government support program.

Selection of elastomer material for a hydraulic fluid is a critical issue since the elastomer materials are more sensitive to fluids than other materials. Chemical reactions and physical behavior can be very damaging if the wrong material is selected.

Even though the specifications ensure compatability, different behaviors can result due to the number and types of additives used in the oil. It may be necessary to conduct a soak test at elevated temperature in order to verify the performance for critical applications. Contact your Shamban sales engineer for assistance.

Following points are important when designing the seal system:

Chemical Compatibility

Compability with the most common oil types can be found in Table IV, page 16. For other medias please contact your Shamban sales engineer. See also note in section below.

Nitrile MIL-P-83461 versus MIL-P-25732C

Due to the chemical composition of the nitriles, it is very important to separate and use them where the functional behaviors are optimized.

	Compression Set (Static)	Wearlife (Dynamic)
MIL-P-83461 (peroxide cured)	+	-
MIL-P-25732C (sulphur cured)	-	+

This indicates that dynamic elastomer contact seal should be MIL-P-25732C in order to optimize seal life requirement.

Temperature Range

Most Turel[®] materials can be used in MIL-G-5514F type II systems (-54°C to +135°C / -65°F to -275°F). The low temperature dynamic cycling limits vary according to elastomer type.

Shamban offers other Turel[®] elastomer compounds which expand this temperature range. Please refer to Table III on page 15. The use of spring energized Variseal[®] can expand the temperature range even further.

Temperature Cycling

The effect of temperature cycling on elastomeric seals results in compression set which means that the elastomer material loses its elasticity over time. For Turel[®] materials, this effect is kept to an acceptable minimum if they are within the indicated temperatures.

Cold Temperatures

Elastomer materials contract approximately 10 times more than steel in cold environments. The material becomes stiffer, loses its flexibility and when passing the lower limit it reaches the glass transition stage whereby it becomes extremely brittle. Physical properties will recover when temperatures go up again. (Increased squeeze can improve the performance.)

Hot Temperatures

Elastomer materials soften and loose its physical properties when passing the upper temperature limit. Physical properties will not recover and it will take a permanent compression set. (Compression set varies with elastomer type).

Surface Speed

The speed of the dynamic surface in contact with an elastomer contact seal should be kept below 3 m/s (9.8 ft/s) to avoid damage to the elastomer.

Aging

The maximum recommended storage time is shown in Table III. This is only valid if the elastomer is stored under controlled conditions in light and airtight packaging.

Mate Co	erial de	Base Polymer	Temperature Ranae	Hardness	Fluid	Reference	Recommended
New	Old		°C (°F)	(Shore A)		specification	shelf life
NK	BAK	Nitrile (NBR)	-54°C to +135°C (-65°F to +275°F)	75	MIL-H-5606	AMS-P-25732 (on QPL)	10 years
NE	BAE	Nitrile (NBR)	-54°C to +135°C (-65°F to +275°F)	75	MIL-H-83282	AMS-P-83461 (on QPL)	10 years
NG	G	Nitrile (NBR)	-54°C to +135°C (-65°F to +275°F)	75	MIL-H-5606 MIL-H-83282	AMS-P-25732	10 years
EH	н	Ethylene Propylene (EP)	-54°C to +149°C (-65°F to +300°F)	80	Phosphate Ester	NAS 1613 rev. 2 class 1	10 years
EP	EP	Ethylene Propylene (EP)	-54°C to +149°C (-65°F to +300°F)	80	Phosphate Ester	NAS 1613 rev. 4 (on QPL)	10 years
FT	т	Fluorocarbon (FKM)	-34°C to +260°C (-30°F to +500°F)	80	MIL-L-7808 MIL-L-23699	AMS-R-83485 ¹⁾	20 years
FL	FAL	Fluorocarbon (FKM)	-23°C to +204°C (-10°F to +400°F)	90	MIL-L-7808 MIL-L-23699	AMS-7259	20 years
FK	FAK	Fluorocarbon (FKM)	-23°C to +204°C (-10°F to +400°F)	75	MIL-L-7808 MIL-L-23699	AMS-7276	20 years
LF	F	Fluorosilicone (FVMQ)	-73°C to +177°C (-100°F to +350°F)	70	Jet fuel	AMS-R-25988 ¹⁾	10 years
LA	LEA	Fluorosilicone (FVMQ)	-57°C to +177°C (-70°F to +350°F)	80	Jet fuel	AMS-R-25988 ¹⁾	10 years

 Table III
 Turel[®] Elastomer Materials

Meets physical property requirements of applicable specification.
 Testing to the specification on a lot-by-lot basis available on request at additional cost. Other materials available upon request. Contact your Shamban sales engineer.

Aerospace Hydraulic Fluids

Table IV Common Oil Types

Specification	Trade name	Temperature Range	Туре	Most Compatible Elastomer
MIL-H-5606 (Nato code H-515)	Red oil	-54°C to +135°C -65°F to +275°F	Petroleum based hydraulic oil. Primary military fluid.	NBR, Sulphur cured, FKM, FVMQ
MIL-H-83282C (Nato code H-537)	Synth. Red oil	-40°C to +205°C -40°F to +401°F	Synthetic hydrocarbon based hydraulic oil. The fluid has improved fire resistance (fire propagation) and shear stability, but reduced low temperature capability.	NBR, peroxide cured, FKM, FVMQ
MIL-PRF-87257 (Nato code H-538)	Synth. Red oil	-54°C to +135°C -65°F to +275°F	Synthetic hydrocarbon based hydraulic oil. Similar to above but improved cold temperature capability	NBR, FKM, FVMQ
AS 1241A-Cl1 AS 1241A-Cl2	Phosphate Ester	-54°C to +135°C -65°F to +275°F	Phosphate Ester fluid. No fire propagation. Cl1 is low density fluid, Cl2 is high density.	EPDM
MIL-L-7808	Engine lub. oil	Nominal -54°C to +150°C -65°F to +300°F	Synthetic oil-ester based lubricant oil (Organic acid ester based)	FKM
MIL-L-23699C	Engine lub. oil	Nominal -40°C to +204°C -40°F to +400°F	Synthetic based lubricant oil (Organic acid ester based)	FKM

Viscosities of Typical Fluids vs. Temperature

Figure 21

Surface Finish (Recommendations)

Surface Finish Recommendations

Current industry standards for surface finish range from 0.2-0.4 μ m Ra (8-16 μ in) per Mil-G-5514 to 0.25-0.50 μ m Ra (10-20 μ in) for general applications. Past industry experience suggested that surfaces smoother than 0.2 μ m Ra (8 μ in) did not allow for ample lubrication of seals, while surfaces rougher than 0.4-0.5 μ m Ra (16-20 μ in) prematurely wore seals, resulting in short life. With the surface measuring and finishing equipment available today, surface finishes smoother than the current standards have shown to be suitable and can actually improve overall seal performance.

Investigations into surface finish measurement equipment and capabilities, along with finishing methods, have resulted in functional seal testing being performed to determine and verify surface finish recommendations for improved seal performance. The following recommendations are a guide to defining the proper surface finish for dynamic sealing applications:

Ra = $0.1 - 0.2 \mu m$	(4 - 8 μin)
------------------------	-------------

Rz	=	1.0 μm maximum	(40 μin)
----	---	----------------	----------

 $Rp = 0.6 \ \mu m \ maximum \qquad (24 \ \mu in)$

tp (Mr) = 50-70% @ depth p = .25Rz relative to a ref. line c = 5% tp

These general recommendations apply to all types of sealing surface finishes including plated or coated surfaces and bare, hardened metal surfaces.

Additionally, the surface profile should have a"plateaued" appearance as the illustration of Figure 29 shows. A surface with a high concentration and magnitude of peaks has been shown to cause excessive seal wear. A surface relatively void of peaks but including valleys for lubrication retention is more suitable for sealing applications.

Direction or "Lay" of Finish

Each of the many different methods used to obtain a specific surface finish - turning, grinding honing, ballizing, polishing, etc. - produces a characteristic direction or "lay" to the surface. This factor alone can have an effect on sealing performance and wear patterns in certain applications. To obtain the best seal performance, avoid finishing methods which promote the formation of leak-paths in your application. For example, avoid a strongly axial lay in a reciprocating rod-seal application, or a definite spiral pattern on the shaft in a rotary application. Consult your Shamban sales engineer for further information.

Mating Surface Hardness

The hardness of a mating surface affects seal performance in several ways. A harder material improves wear life by resisting the tendency of seals to damage the mating-surface finish. If the mating material is too soft, the seal will burnish or damage the surface. Harder mating surfaces also allow the user to specify certain tougher, longer-lasting Turcon[®] seal materials (such as Carbon fiber filled T29) which would not be recommended on softer hardware surfaces. Harder mating surfaces have a tendency to lower the running friction of a seal.

A seal will polish its mating surface, especially if it is a softer metal. For example, a reciprocating rod made of stainless steel with a hardness of 28 to 30 Rockwell C and a finish of Ra 0.6 μ m will generally be polished by the seal to a finish of Ra 0.3 μ m or better over a short time. Seal friction and wear will then decrease accordingly. Materials that are harder than 44 Rockwell C do not polish as easily. The abrasive nature of a rough finish can cause excessive seal wear during the early burn-in period. Therefore, the harder the mating surface, the more important it is to start with a smooth finish.

Substrates

In most applications an unplated, uncoated shaft is more than adequate. Typical mating-surface materials are listed in the Table IX, page 26 and Table X, page 27. These materials (and others not listed) can also act as substrates for platings or coatings to achieve higher hardness values. An important property to consider in such cases is the ability of the substrate to support the plating. For example, when a high-pressure load is exerted on a seal running against a hard-chrome plating supported by a soft substrate (such as 300 series stainless steel) the plating may peel or crack and then abrade the seal. A better substrate would be stainless steel Type 440C (hardened to 44 Rockwell C) or an alloy steel such as 4340 in the fully-hardened condition.

Platings and Coatings

Seal designs run well against unplated surfaces at moderate speeds and pressures. In high-speed rotary or high-pressure reciprocating service, harder surfaces are preferred. Several examples of platings and coatings (not a complete list) are given on page 27.

For further advice on platings and coatings, please consult your Shamban sales engineer.

Seal Material

Seal material selection affects mating-surface hardness requirements. When an application requires the longest possible wear life under moderate to severe conditions, the seal material should be one of the harder, highly-filled Turcon[®] blends. For example, Turcon[®] T29 is very wear-resistant but contains carbon fibers that can abrade soft mating surfaces. These materials should only be run against materials with hardness values of 45 to 70+ Rockwell C.

Supporting Test Data

Functional dynamic seal testing was conducted under different evaluation programs that were designed to study surface finish effects on seal performance. Various types of surfaces (coatings) were evaluated throughout these tests. Not all of the tests were performed utilizing the same conditions or test seals. Some of the test results and observed trends relative to surface finish effects on seal performance are reported here as supporting data.

Functional seal testing utilizing commercially available induction-hardened, chrome-plated (IHCP) piston rod material meeting the 0.2-0.4 μ m Ra finish requirement has typically shown much variation in seal performance results. Analyzing test results, the test parameters, equipment and methods concluded that the variations were most likely due to differences in the surface textures of the test rods.

Further testing using IHCP rods finished to the extremes of the 0.2-0.4 Ra requirement confirmed this suspicion. A test matrix was conducted whereby four combinations of finishes were evaluated: (Ra in μ m)

- 0.2 Ra ground
- 0.2 Ra ground, polished
- 0.4 Ra ground
- 0.4 Ra ground, polished

The results of this study were somewhat surprising and uncovered some effects that surface finish can have on seal performance. In general, the polished surfaces performed better with respect to seal leakage and wear, which was expected. But the polished 0.4 Ra surfaces allowed better seal performance than the 0.2 Ra ground; this result revealed the need for more in-depth studies of the effects of surface texture and type. Not only was the 0.2-0.4 μ m roughness average finish callout inadequate, but the type of finish (ground only vs. ground and polished) was also significant to seal performance.

A test program was conducted to evaluate proposed improvements to a standard industrial sealing system for a reciprocating application. A comparison of different surface finishes was part of this study. The test rods were not plated; an alloy steel hardened to Rc 36-40 was the test rod material. For one of the tests, a maximum Rp value (peak height) was set for the test rod in addition to the Ra callout. The wear of the primary seal element was measured after 1 million cycles. The seal that ran on the more tightly-controlled surface finish showed a significant advantage with respect to wear as Figure 22 illustrates. Leakage performance was identical between the two tests.

Figure 22 Seal Wear Comparison

A seal performance evaluation was conducted comparing standard hard-chrome plate to electroless nickel and tungsten carbide coatings. These coatings were applied to a base material of C1045 steel, induction hardened to 40-50 Rc. Both PTFE-contact (slipper seal) and elastomer-contact seals were evaluated under the following test conditions: (Ra in µm)

Pressure	: 3000 psi constant
Stroke	: 3 inches
Stroke Rate	: 1 Hz
Fluid	: Mil-H-83282
Duration	: 300.000 cycles (TTD 1.8 million inches)
Temperature	e: 121°C (250 °F)

Test rods were prepared according to the following descriptions:

0.15-0.30 Ra standard hard-chrome

- 0.15-0.30 Ra standard electroless nickel
- 0.05-0.10 Ra superfinished electroless nickel
- 0.05-0.10 Ra superfinished tungsten carbide

Leakage and wear were the two performance characteristics measured for all seals tested. Figure 23 shows average leakage data for the Turcon[®]-contact seal tests. Figure 24 shows average seal ring wear data for the Turcon[®]-contact seal tests.

Figure 23 Turcon[®]-contact Seal Leakage

Figure 24 Turcon[®]-contact Seal Wear

As can be seen from the graphs, significant improvements in Turcon[®]-contact (slipper) seal performance can be gained through the use of advanced coatings and surface finish specifications.

Figures 25 and 26 show the leakage and wear results of the elastomer-contact seal tests.

Figure 25 Elastomer-contact Seal Leakage

Figure 26 Elastomer-contact Seal Wear

In comparison to the Turcon[®]-contact seal performance data, the elastomer-contact seal performance gains are not as significant. This is mostly attributed to basic seal configuration and functional differences between the two types of seals.

Aluminum is occasionally used for cylinder barrels where weight is a major concern or the application is relatively light duty, as in pneumatics. For increased corrosion protection and wear resistance, aluminum alloys are usually hard-anodized. An evaluation was performed where hard-anodized aluminum was compared to tungsten carbide coated aluminum. Both Turcon[®]-contact and elastomer contact seals were tested to the following parameters:

- Pressure : 3000 psi constant
- Stroke : 3 inches

Stroke Rate : 1 Hz

- Fluid : Mil-H-83282
- Duration : 300.00 cycles (1.8 million inches)

Temperature: 121°C (250 °F)

Leakage and wear were measured for all test samples. Figure 27 shows average leakage data; Figure 28 shows average seal ring wear data.

Figure 27 Turcon[®]-contact Seal Leakage

Figure 28 Turcon[®]-contact Seal Wear

Again, significant improvements in seal performance were observed between the different surfaces.

Throughout these supporting data, seal performance gains were demonstrated through the use of surface finish technology and advanced coatings. The exact contributions from either the coatings or actual surface finish improvements to the enhanced seal performances were not quantified. Regardless, significant performance gains, especially in the case of the Turcon[®]-contact seals, were shown as a result of improved surface quality.

Conclusion

Surface finish quality is directly related to dynamic seal performance. Properly defining, measuring and controlling surface finish quality is critical to the functional reliability and service life of a seal. Ra alone is not an adequate description of a sealing surface, however, care must be taken to prevent over-specifying surface finish requirements.

Many different types of surfaces are suitable for sealing applications as well as methods and equipment used to obtain satisfactory surface finishes. Advanced coatings and finishes, typically investigated as replacements to chrome plating, have demonstrated good performance gains with respect to dynamic sealing in hydraulic applications.

Surface Finish (Measurement Methods)

R_a - Arithmetic Average Roughness

Roughness averages are the most commonly used parameters because they provide a simple value for accept/reject decisions. Arithmetic average roughness, or R_{a} , is the arithmetic average height of roughness-component irregularities (peak heights and valleys) from the mean line, measured within the sampling length, L. See figure 29.

The measurements are taken as the fine point of the stylus on a profilometer which traverses the sampling length on the surface being measured.

Figure 29 Surface Finish - R_a Versus R_a

R_q - Geometric Average Roughness

 R_q is the current term for what was formerly called root-mean-square or RMS. R_q is more sensitive to occasional highs and lows, making it a valuable complement to $R_a.\ R_q$ is the geometric average height of roughness-component irregularities from the mean line measured within the sampling length, L. Compare to R_a in Table V.

The main difference in the two scales is that R_q amplifies occasional high or low readings, while R_a simply averages them. For a given surface, therefore, the Rq value will be higher than the Ra value (by approximately 11%). That is, a surface finish that measures R_q 0.5 μ m is equivalent to approximately R_a 0.45 μ m.

R _a , AA	R _a , AA, CLA		German-
English (μin.)	Metric (μm)	English (μin.)	Swiss Norm ¹⁾
0.9	0.02	1.0	
1.0	0.03	1.1	N1
1.8	0.05	2.0	
2.0	0.05	2.2	N2
3.6	0.09	4.0	
4.0	0.10	4.4	N3
5.4	0.14	6.0	
7.2	0.18	8.0	
8.0	0.20	8.9	N4
10.8	0.28	12.0	
14.4	0.37	16.0	
16.0	0.41	17.8	N5
28.8	0.73	32.0	
32.0	0.81	35.5	N6
56.8	1.44	63.0	
63.0	1.60	69.9	N7

Table V Surface Finish Conversion Table

R_a : Arithmeric average roughness

AA : Arithmeric average

CLA: Center Line Average

R_q : Geometric average roughness

RMS : Root-mean-square

1)

The German-Swiss Norm is a series of roughness-grade numbers used to avoid confusion with numerical values of other types.

Improved Measurement Methods

The R_a measurement does not give a true picture of the real surface profile. The finish process plays a very important role in the outcome. In particular, the open profile "Peak Structure" can seriously affect seal performance, as its jagged structure can cut and nick the seal surface. On the other hand the closed profile form "valley structure", gives improved seal performance, because the valleys retain fluid and lubricate the running seal surface. Please see Table VI.

Table VI R_a Comparison

Busak + Shamban

Even with identical R_{α} values, the resulting seal performance will be very different.

Edition April 2004

An improved surface measurement method is described in the new ISO 13565-1 / -2 / -3, including the peak, valley and material ratios as described below.

Figure 30 Abbot Curve

R_k (Core Roughness)

The core roughness depth is the depth of the roughness core profile.

M_r (Material Ratio)

M_{r1} in %

The material portion M_{r1} is determined by the intersecting line which separates the protruding peaks from the roughness core profile.

M_{r2} in %

The material portion M_{r2} is determined by the intersecting line which separates the valleys from the roughness core profile.

R_{pk} (Reduced peak height)

The reduced peak height R_{pk} is the average height of the protruding peaks above the roughness core profile.

R_{vk} (Reduced valley depth)

The reduced valley depth R_{vk} is the average depth of the profile valleys projecting through the roughness core profile.

The harder the material the more important it is to reduce the peak height R_{pk} . If mating surface is ceramic, the R_{pk} value must be down to 0.05 μ m because the hard peaks will cut into the seal surface.

Other surface parameters are skewnesss and kurtosis, which give a more detailed picture of the surface. For explanation see Figure 31 below.

Figure 31 Surface Measurement Visualized

The optimum view of the surface structure is a 3-dimensional computerized picture showing not only peak, core and valley, but also direction of ridges and channels in the surface structure. Such pictures can be very valuable in evaluating seal performance. This method of measurement will expose widely varying surface profiles dependent upon base materials, platings or coatings, and the process used to produce the surface.

Table VII Properties of Surface Structure

Parameter	Unworn (μm)	Worn (μm)
Sα	0.11	0.21
S _{pk}	0.09	0.11
S _k	0.25	0.37
S _{vk}	0.40	0.98

Value measured in this dimension is called S instead of R, e.g. S_{α} is equivalent to R_{α} .

This method requires a sophisticated filter technique and software program that can convert the mathematical rounding. This technique is not readily available in industry, but is available at some universities and technical institutes.

3-dimensional surface texture characteristics are denoted by "S". 2-dimensional surface texture characteristics are denoted by "R". E.g. S_a is the 3-D equivalent to R_a

Figure 32 Surface Structure

Hardware Specifications

Table VIII	Comparative Hardness Scales
	for Steel

Pockwell	Brinell N	lumber	Rock	well	Pockwell	Tensile
C	Standard ball	Tungsten ball	Α	D	15-N	Strength (kpsi)
68 67 66 65 64 63 62 61 60		719 722 705 688 670 654	85.6 85.0 84.5 83.9 83.4 82.8 82.3 81.8 81.2	76.9 76.1 75.4 74.5 73.8 73.0 72.2 71.5 70.7	93.2 92.9 92.5 92.2 91.8 91.4 91.1 90.7 90.2	
59 58 57 55 55 54 53 52 51 50	500 487 475	634 615 595 577 560 543 525 512 496 481	80.7 80.1 79.6 79.0 78.5 78.0 77.4 76.8 76.3 75.9	69.9 69.2 68.5 67.7 66.9 66.1 65.4 64.6 63.8 63.1	89.8 89.3 88.9 88.3 87.9 87.4 86.9 86.4 85.9 85.5	311 301 292 283 274 266 257 245 239 233
49 48 47 46 45 44 43 42 41 40	464 451 442 432 421 409 400 390 381 371	469 455 443 432 421 409 400 390 381 371	75.2 74.7 74.1 73.6 73.1 72.5 72.0 71.5 70.9 70.4	62.1 61.4 60.8 60.0 59.2 58.5 57.7 56.9 56.2 55.4	85.0 84.5 83.9 83.5 83.0 82.5 82.0 81.5 80.9 80.4	227 221 217 212 206 200 196 191 187 182
39 38 37 36 35 34 33 32 31 30	362 353 344 336 327 319 311 301 294 286	362 353 344 336 327 319 311 301 294 286	69.9 69.4 68.9 68.4 67.9 67.4 66.8 66.3 65.8 65.3	54.6 53.8 53.1 52.3 51.5 50.8 50.0 49.2 48.4 47.7	79.9 79.4 78.8 78.3 77.7 77.2 76.6 76.1 75.6 75.0	177 173 169 165 160 156 152 147 144 140
29 28 27 26 25 24 23 22 21 20	279 271 264 258 253 247 243 237 231 226	279 271 264 258 253 247 243 237 231 226	64.7 64.3 63.8 62.8 62.4 62.0 61.5 61.0 60.5	47.0 46.1 45.2 44.6 43.8 43.1 42.1 41.6 40.9 40.1	74.5 73.9 73.3 72.8 72.2 71.6 71.0 70.5 69.9 69.4	137 133 129 126 123 121 119 116 113 111

Relationship between hardness and tensile strength

The approximate relationship between the hardness of a metal and its tensile strength is shown by the following formula in which B = Brinell hardness number.

Tensile strength = $B \times 515$ (for Brinell numbers up to 175) Tensile strength = $B \times 490$ (for Brinell numbers over 175)

These formulas give the tensile strength in pounds per square inch and apply only to steels. This relationship between hardness and tensile strength does not apply to nonferrous metals with the possible exception of certain aluminum alloys.

Dynamic Alignment

Proper alignment of dynamic mating surfaces is an important factor in improving seal performance. A well aligned shaft and housing assembly will last longer, leak less, and operate more reliably at higher speeds and pressures. There are three types of misalignment which should be avoided during the hardware-design phase.

Angular Displacement

When the axis of a rod or piston moves at an angle away from the true centerline, a condition called "angular displacement" exists. It affects sealing integrity by loading the seal unevenly and puts undue stress on the elastomer/spring. The seal wears more rapidly and may fail before its maximum wear life. Although this condition is often detected in the static condition, it is essential to measure it dynamically as well and correct any misalignment that is found.

Figure 33 Angular Displacement

Eccentricity

In rotary service, when the shaft rotates about its own axis but is offset from the centerline of the housing, a condition of eccentric misalignment exists. In reciprocating service, the condition occurs when a rod or piston moves parallel to its own centerline but is offset from the true centerline of the housing or bore. In this situation the seal is stressed more heavily on one side, resulting in excess wear, and insufficiently loaded on the opposite side causing leakage. When examining the used seal, it may show damage on one side only. There may also be a visible difference in wear rates on opposite sides of the seal.

Figure 34 Eccentricity

Shaft Runout

Shaft runout occurs when a shaft is rotating about its own centerline which is offset from the true centerline of the housing. The shaft centerline is not stable in one place as in eccentric misalignment, but is itself moving around the true centerline of the housing, resulting in a "wobbling" effect. This condition stresses the seal around all points on its diameter. Shaft runout is measured with a dial indicator and is expressed in "thousandths of an inch" TIR (Total Indicator Reading). Runout causes a seal to wear prematurely but with more of an even wear pattern than that of "eccentric misalignment". It is often a contributor to early leakage since a potential leak-path is continuously formed as the "high point" of the shaft passes each point on the sealing contact surface.

Excessive Runout

The amount of shaft runout in a hardware design can range from "minimal" (has no significant effect on seal performance) to "moderate" (less-than-optimum wear life) to "excessive" (causing an unacceptable early failure). The amount that is considered "excessive" can vary from one application to another depending on shaft speed, fluid media, and the limits specified by the design engineer concerning leakage rates and wear life. It also depends on how much runout a particular seal design can handle. Some seal designs can handle more runout than others.

Consult your Shamban sales engineer for further data on high-runout applications.

Table IX Typical Shaft Materials Used in Contact with Seals

		Typical Hardness, RC		
	Material	Annealed	Hardened	Applications
	17-4 PH	35	44	General-purpose with moderate corrosion resistance; a hardenable material for moderate-wear applications.
	Туре 303	-	20*	Free-machining, very soft, for low speeds and pressures, with moderate corrosion resistance.
Stainless Steel	Туре 304	-	28*	Soft material with moderate corrosion resistance for use at low speeds and pressures.
	Туре 316	-	28*	Soft material with excellent corrosion resistance for use at low speeds and pressures.
	Туре 440С 22		44	Heat-treated material is hardest of all stainless steels; for higher speeds and pressures, but lower corrosion resistance than 300 series stainless steel.
Carbon Steel	SAE 1045	19	58	Good mechanical properties with higher strength than other low-carbon steels. Use in noncorrosive media only.
Alloy	4140	10	50	General-purpose applications in noncorrosive media, for moderate speeds and pressures.
Steel	4340	13	50	General service with better mechanical properties than Alloy 4140.
Tool Steel	D-2	-	62	High hardness and wear-resistance but limited corrosion resistance, for high speeds at moderate pressures.
	Hard-anodized aluminum 6061-T6	-	70+	Hard-anodized aluminum makes an excellent low-friction bore surface for reciprocating piston-seal applications. Not recommended for rotary service.
Soft Metals	Bronze	40 Rockwell B	85 Rockwell B	Light-duty service in slow speeds, low pressures, where friction and corrosion are not concerns.
	Mild Steel	150 Brinell	-	Light-duty service in noncorrosive media only.
Non-	Ceramic	70		For high wear resistance at high pressures or high speeds, and for low friction against Turcon [®] seals due to lubrication-film-retention properties
metallics	Sapphire	9 Mohs scale		Very hard, chemically inert material with ability to obtain flame polished finish less than Ra 0.05 $\mu m.$

The information supplied above is intended only as a guide. We strongly recommend that you test the selected material in the actual application before production use.
*) Series 300 stainless steel cannot be hardened by heat treatment. Values shown are for 30% cold-worked material.

Coating Type		MIL Spec.	Hardness RC	Nominal Thickness	Comments
Chrome	Hard Chrome	QQC 320B Class 2E	65	0.02-0.13	Wearresistant for light duty. Not recommended for fast rotary or corrosive applications.
Plating	Thin-dense Chrome	MIL-C-23422C Class 2	70	0.005-0.015	Higher wear resistance and lower friction than conventional chrome in light to moderate speeds.
Electroless Nickel	Nickel, as-deposited	MIL-C-22074B	48-52	0.013-0.038	Excellent for corrosive applications in light to moderate speeds and pressures.
Plating	Nickel, fully-hardened	MIL-C-26074B	58-70	0.013-0.038	Harder but more abrasive than as-deposited nickel. Not recommended for high-speed rotary.
Plasma	Chromium Oxide	See note 2	71	0.013-0.038	Recommended when wear life is the primary concern. Not recommended for high-shock loads.
Spray Coating	Aluminum Oxide	MIL-P-83348 ³	60-69	0.013-0.038	Lower-cost, less wear-resistant but greater ductility than chromium oxide coatings.
HVOF ¹	Tungsten Carbide	MIL-P-83348 ²	67-74	dependant upon application	High wear resistance, with higher bonding strength, for high speed and pressure combinations.
Anodizing	Hard-anodized Aluminum	MIL-A-8625C Type III	Over 70	0.05-0.25	Excellent bore material in piston-seal applications, as a lower friction mating surface than bare aluminum

Table X Properties of Typical Platings

The above information is intended only as a guide. Testing of the selected material in actual service conditions is recommended to determine the suitability of a plating or coating for a specific application.

¹) HVOF = High Velocity Oxygen Fuel, a coating system using high-pressure, high-velocity spray guns (rocket guns) to improve coating density, hardness, and bond strength.

²) The MIL-Spec. is noted for reference only. Plasma-spray and HVOF coatings are typically produced using industry standards developed by certain companies. Those standards normally meet or exceed the requirements of the military specifications noted above.

Finite Element Analysis (FEA)

FEA is a technique by which a complex geometry, such as a sealing element, is divided into small, simply shaped entities. Using results from simple test methods designed to provide a reasonable measure of the properties of the seal in the end application, you can construct elementary equations relating the material properties and the complex loads of the behavior of the entire complex geometry. These results can then be verified using either traditional test methods or simple test methods designed to isolate the behavior of one feature of the seal assembly. With FEA, the seal designer can screen new materials and designs of the computer rapidly, and limit the number of designs nessesary to be fully tested. This screening speeds the development cycle. Some additional benefits include quickly predicting the performance of a design in a variety of application conditions, providing input between the seal and the hardware conditions, and uncovering portions of the seal material/seal design interaction.

Figure 36 Featuring Wedgpak[®] in Unpressurized State

Figure 37 Featuring Wedgpak® in Pressurized State

Edition April 2004

Seal Quick Reference Guide

Sealing elements have a decisive influence on the design, function, and service life of hydraulic and pneumatic cylinders and systems.

Leakage control, friction control, resistance to wear and extrusion, chemical resistance, resistance to high and low temperature extremes, compact form, and ease of installation are demanded in order to meet the industry requirements for a functional sealing solution.

The significance of the performance parameters and their limits determines the requirements of the sealing application. Shamban has developed a unique and complete range of seals to meet the challenging demands of aerospace applications. Using optimized geometries, proven designs, and innovative materials, Shamban offers aerospace customers a wide range of sealing systems.

To select the most appropriate seal type and material, it is necessary to first define all the desired functional parameters. Table XI on pages 30 - 35 can be used to make an initial selection of seals and materials according to the specific requirements of each application.

The second column of Table XI contains the number of the page on which further general information can be found, including specific design and installation instructions on the particular seal type and materials (or material combinations with multi-element seals, e.g. Plus Seal[®]II).

The quality of the mating surface is explained in the section "Surface Finish", pages 17 - 23. Because surface texture has such a decisive influence on the functionality, reliability and service life of the seal system, it is important that these values are understood and applied.

Please do not hesitate to contact our Application Engineering Department to request further information and assistance on specific applications and to answer technical questions.

Note on Ordering

The multi-element seal assemblies presented in this catalog are supplied as complete sets. The assembly includes the seal and proprietary elastomer energizing element, such as the Plus Seal[®] II which contains a Turel[®] elastomer and Turcon[®] cap seal.

Older seal designs not represented in this catalog naturally continue to be available. For all new applications, we recommend you use the seal types and preferred sizes listed here.

Other combinations of Turcon[®] materials and special designs can be developed and supplied for unique applications. All intermediate sizes up to 3000 mm (10 ft.) diameter are available, providing there is sufficient demand. Sizes over 3000 mm (10 ft.) are available for some seal designs.

The sizes contained in the catalog are considered standard sizes. For non-standard sizes that include proprietary elastomer design, a share of the mold cost may be charged to the Customer if there is only a limited demand for the size.

Table XI Selection Criteria for Aerospace Seals

(To be continued. See next page 🏲)

			Application				
Seal	Page	Features	Gland	Move- ment	Pressure Direction	Piston	Rod
Turcon® VL Seal®	44	High performance unidirectional rod seal -Low friction -Leaktight	MIL-G-5514F AS4716	₩	S	No	Yes
Turcon [®] Plus Seal [®] II	50	High performance slipper seal -Low constant friction -Resistance to wear and extrusion optimized -Easy installation -Recommended for high frequencies	MIL-G-5514F AS4716	 □ ※ □ → → →<	D	Yes	Yes
Turcon [®] Double Delta [®] II	54	The original slipper seal design -No stick-slip -Cost effective -Can be made to suit any O-Ring size.	MIL-G-5514F AS4716	*	D	Yes	Yes
Turcon [®] Wedgpak [®]	56	Symmetrical seal with zero leakage -Low friction -Excellent extrusion and wear resistance -Preferred elastomer contact dynamic seal	MIL-G-5514F AS4716	⊒ * ⇔	D	Yes	Yes
Turcon [®] Hatseal [®] II	59	Combined slipper and elastomer contact seal. -Zero leakage at low pressure -High pressure capability -Built-in sealing redundancy	One and two Back-up Ring groove width MIL-G-5514F (except 000 series) AS4716	≓*	S	No	Yes
Turcon® T-Seal	62	Excellent static seal -Geometry prevents spiraling/rolling of seal during installation and use	MIL-G-5514F AS4716	≝*	D	Yes	Yes
Turcon [®] AQ-Seal [®] 5	65	-Excellent sealability between gas and oil -Low friction and leaktight	MIL-G-5514F (only 300 and 400 series) AS4716	*	D	Yes	No
KEY TO MOVEMENT:	Rec	iprocating = Rotary =	Oscillating	g =	Helix =	Static = 🔆	

KEY TO PRESSURE DIRECTION: Single acting (Unidirectional) = S

Double acting (Bidirectional) = D

Application					
Speed Limit	Temperature Range *)	Pressure **)	Description	Seal	
15.0 m/s 49.2 ft/s	-54 to +200°C -65 to +390°F	5000 psi 35 MPa	The VL Seal [®] has been developed over the past few years as a new generation unidirectional Rod seal. The design has taken the latest empirical and theoretical experience into account in order to optimise performance, friction, leakage and service life. This has been achieved through in-house testing and qualified in customer applications. The back-pumping effect allows the seal to relieve pressure trapped between tandem seals or between seals and double- acting scrapers.	Turcon [®] VL Seal [®]	
15.0 m/s 49.2 ft/s	-54 to +200°C -65 to +390°F	5000 psi 35 MPa	This superior slipper seal design has a contoured seal cap, formed to match the lemon shaped elastomer ring. The special elastomer allows more room for cap thickness, extended service life and activates the cap equally over the width, thereby reducing the friction. The cap can be provided with grooves in order to reduce friction even further.	Turcon [®] Plus Seal [®] II	
15.0 m/s 49.2 ft/s	-54 to +200°C -65 to +390°F	5000 psi 35 MPa	This is the original slipper seal that has a delta shaped cap activated by an O-Ring. This seal type has a good reputation for low friction and good leakage control in many dynamic applications.	Turcon [®] Double Delta [®] II	
3.0 m/s 9.8 ft/s	-54 to +200°C -65 to +390°F	5000 psi 35 MPa	A triangular shaped elastomer part, protected against extrusion, rolling and spiraling by two delta rings. The minimized elastomer footprint on the dynamic surface ensures an excellent leakage control, and is an improvement over seals with broader elastomer contact as the tendency to adhere to sealing surface is greatly reduced. The seal is "foolproof".	Turcon [®] Wedgpak [®]	
3.0 m/s 9.8 ft/s	-54 to +200°C -65 to +390°F	5000 psi 35 MPa	The best sealing characteristics of an elastomer contact seal and a slipper seal are combined in the Hatseal [®] II. The mini- mized elastomer footprint reduces friction and extends service life, while it maintains leakage control and dynamic perfor- mance at low pressure. The platform provides excellent extru- sion resistance in peak pressure conditions.	Turcon [®] Hatseal [®] II	
1.0 m/s 3.3 ft/s	-54 to +200°C -65 to +390°F	5000 psi 35 MPa	T-Seal is primarily recommended for static application, has good leakage control and is prevented from rolling/spiraling in the gland at installation due to its unique shape.	Turcon® T-Seal	
3.0 m/s 9.8 ft/s	-54 to +200°C -65 to +390°F	5000 psi 35 MPa	This unique seal design was developed from the original Turcon [®] AQ-Seal [®] , but with an enlarged cap, allowing for a centrally positioned groove for a QUAD-RING [®] seal. This seal type has excellent leakage control of an elastomer contact seal, but at the same time, a very low friction and long service life, because the QUAD-RING [®] seal is energized by the design squeeze and not by the system pressure. AQ-Seal [®] 5 is especially designed to separate fluids and gases in dynamic applications.	Turcon [®] AQ-Seal [®] 5	

*) Temperature range is dependent upon material selection. **)Pressure is dependent upon material and gap dimension. Avoid combining extreme limits

(To be continued.	See next page	
-------------------	---------------	--

Seal	Page	Features	Application		n		
			Gland	Move- ment	Pressure Direction	Piston	Rod
Turcon [®] Variseal [®]	68	Spring energized seal -Chemical resistance optimal -Wide temperature range -Several spring designs available -Unlimited shelf life	MIL-G-5514F AS4716 (Groove may have to be split for installation)	<u> 월 </u>	S	Yes	Yes
Turcon [®] Back-up Ring		-Spiral -Solid		⊒*			
	79	-Stakbak [®] design	MIL-G-5514F AS4716		D	Yes	Yes
Turcon [®] Dual Piston Ring		-Spring energized seal -Low friction Metallic expander	R L S gland	↓			
	82	-Metallic expander -Wide temperature range -Controlled leakage -Saves space by using narrow grooves -Low hysteresis -Unlimited shelf life	standard to MIL-G-5514F AS4716 bore sizes		D	Yes	No
Turcon [®] Glyd Ring [®]		Optimum slipper seal -Low friction -Long service life -Saves space by using narrow grooves	B + S gland standard to MIL-G-5514F AS 4716 bore and rod sizes	⊒*	D	Yes	Yes
	85						
Turcon [®] Stepseal [®] K		Excellent primary seal -High pressure capability -Pressure relieving effect	B + S gland				
	91	-rressure relieving effect	standard to MIL-G-5514F AS4716 bore and rod sizes		S	Yes	Yes
Turcon [®] Roto Glyd Ring [®]		Rotary seal -Low speed High processors					
	98	-rign pressure	ISO 7425/1		D	Yes	Yes
KEY TO MOVEMENT:	Rec	iprocating = Rotary =) Oscillating	ı =	Helix =	Static = 🔆	

-

 \square

KEY TO PRESSURE DIRECTION: Single acting (Unidirectional) = S Double acting (Bidirectional) = D

	Application			
Speed Limit	Temperature Range *)	Pressure **)	Description	Seal
15.0 m/s 49.2 ft/s	-273 to +260°C -459.67 to +500°F	5000 psi 35 MPa	Turcon [®] Variseal [®] is a single acting slipper seal activated with a metal spring, which is normally used in conditions of to extreme temperature, aggressive chemical media and long storage life. At the same time, it still features all the advances of the slipper seal as to low friction, no stick-slip, good leakage control and long service life.	Turcon® Variseal®
-	-70 to +200°C -94 to +390°F	8000 psi 55 MPa	All standards and sizes available in virgin as well as filled PTFE compounds. The patented Stakbak [®] design allows extended temperature and pressure ranges.	Turcon [®] Back-up Ring
			Dual Piston Ring is energized by a stainless steel wave shaped	Turcon [®] Dual Piston Ring
15.0 m/s 49.2 ft/s	-70 to +260°C -94 to +500°F	5000 psi 35 MPa	spring. The characteristics of the seal are very low friction, long service life and a controlled leakage over the rings. Dual piston rings can be supplied with various spring types, depending upon application.	
15.0 m/s 49.2 ft/s	-54 to +200°C -65 to +390°F	5000 psi 35 MPa	An all-around seal for hydraulics and pneumatics. Turcon [®] Glyd Ring [®] combines the experience from years of field test and laboratory research into highly efficient and reliable low friction seals for both high and low pressure systems widely used in industrial applications. A special advantage is the possibility of decreasing groove width in for example, spool valves.	Turcon [®] Glyd Ring [®]
			Turcon [®] Stepseal [®] K consists of a patented step cap, activated by an O-Rina. This is a further development of the slipper seal	Turcon [®] Stepseal [®] K
15.0 m/s 49.2 ft/s	-54 to +200°C -65 to +390°F	5000 psi 35 MPa	for the previously inactive cap now has an active back-pumping effect, when used with a secondary seal. This avoids pressure build-up during long strokes. Widely used in industrial applications, the Stepseal [®] K is now also available to the aerospace industry.	
2.0 m/s 6.5 ft/s	-54 to +200°C -65 to +390°F	3000 psi 21 MPa	The Turcon [®] Roto Glyd Ring [®] is designed with chamfers, notches and radial grooves. The seal has no interference fit, but is energized via an O-Ring. High pressure and low speed are the main features.	Turcon [®] Roto Glyd Ring [®]

*) Temperature range is dependent upon material selection. **)Pressure is dependent upon material and gap dimension. Avoid combining extreme limits

(To be continued. See next page 🏲)

Seal	Page	Features			Application		
ocui	l ugo	i culores	Gland	move- ment	Double Acting	Piston	Rod
Turcon® Varilip®	100	Rotary seal -Low friction -Dry run capability -Chemical resistance optimal -Outperforms traditional Oil seals	Gland to suit application		s	No	Yes
Footseal II		-Fits BACS11AA					
	103		BACS11AA Gland		S	No	Yes
Turcon [®] Excluder [®] DC		-Optimum scraping effect -Dual lip for optimized effect		+			
2	107	- venied version available	B + S standard to MS33675	<u>多</u> 日 日 日 日 日 日 日 日 日 日 日 日 日	S	No	Yes
Turcon [®] Variseal [®] Scraper		Spring energized scraper -Wide temperature range	MIL-G-5514F AS4716 (Groove may have to be split for installation)				
	111	-Hi-Clean option			S	Yes	Yes
Turcite [®] Slydring [®] Luytex [®] Slydring [®]		-High load bearing capability -Very wear resistant		⊒*			
\mathcal{O}	114	-Protection of the seals	Gland to suit application		D	Yes	Yes
Turcon [®] Wedgpak [®] Face Seal		Flange seal -Absorbing pulsing and vibration		*			
	118	-Internal and external version -Easy installation	Face Gland		S	External	Internal
KEY TO MOVEMENT:	Rec	iprocating = 📻 Rotary =	Gscillating	ı =	Helix =	Static = 🔆	

KEY TO PRESSURE DIRECTION: Single acting (Unidirectional) = S

Double acting (Bidirectional) = D

	Application			
Speed Limit	Temperature Range *)	Pressure **)	Description	Seal
20.0 m/s 65.6 ft/s	-60 to +200°C -76 to +390°F	290 psi 2 MPa	Varilip [®] has a metal or plastic casing incorporating one, two or three seal lips in the same or reversed direction, depending upon the chosen design. Designed for fast rotating shafts, Varilip [®] characteristics are long service life with minimal friction combined with very good leakage control.	Turcon [®] Varilip [®]
15.0 m/s 49.2 ft/s	-54 to +200°C -65 to +390°F	6500 psi 45 MPa	Footseal II is an O-Ring activated slipper seal designed to fit the BACS11AA gland standard. The Footseal II is an improvement over the original Footseal design.	Footseal II
15.0 m/s 49.2 ft/s	-54 to +200°C -65 to +390°F	-	Turcon [®] Excluder [®] is a solid ring with dual scraper lip contact, activated by an O-Ring, gives the best performance for an Excluder [®] device. The primary lip will prevent dust and ice from penetrating the system during the in-stroke of the rod while the secondary lip will stop the oil film from going out of the system during the out-stroke.	Turcon [®] Excluder [®] DC
15.0 m/s 49.2 ft/s	-70 to +260°C -94 to +500°F	-	Turcon [®] Variseal [®] Scraper is a spring energized slipper seal with optimized scraping angle. Variseal [®] Scraper is designed for systems with extreme working temperature, high speeds, and agressive media.	Turcon® Variseal® Scraper
(depending upon material choice)	-60 to +260°C -76 to +500°F	(3625-50 000 psi) 25 - 345 N/mm ² Depending on material	Wear rings made from polymeric materials offer many advantages over metallic bearings. Among these are: Low friction, long wear life, easy replacement and low cost.	Turcite [®] Slydring [®] Luytex [®] Slydring [®]
-	-54 to +200°C -65 to +390°F	5000 psi 35 MPa	Turcon [®] Wedgpak [®] Face Seal is a flange version of the standard Wedgpak [®] . Elastomer ring provides leaktightness, even with pulsing and vibration, whereas the Turcon [®] ring protects against extrusion.	Turcon [®] Wedgpak [®] Face Seal

*) Temperature range is dependent upon material selection. **)Pressure is dependent upon material and gap dimension. Avoid combining extreme limits

■ Hardware Dimensions per MIL-G-5514F and AS4716, Bore

If You use AS4716 hardware dimensions, please contact Your Shamban Sales Engineer for recommendation.

Figure 38 Installation Drawing

Table XII Groove Dimensions, Bore

					Вс	ore Siz	es pei	MIL-G-5	514F						Char acc. to J	nges AS4716
			Incl	า						mm	า				Inch	mm
Dash No	ø A Bore Dia.	ø F Groove Dia.	Diam. Clearance Max.	R Rad.	Gra +0. G ₀	ove W 010/-0 G ₁	G 2	ø A Bore Dia.	ø F Groove Dia.	Diam. Clearance Max.	R Rad.	Gro +0 G ₀	ove W).25/-0 G ₁	G 2	ø F Groove Dia.	ø F Groove Dia.
	+0.001 -0.000	+0.000 -0.001						+0.025 -0.000	+0.000 -0.025						+0.000 -0.001	+0.000 -0.025
004 005 006 007	0.190 0.221 0.235 0.266	0.076 0.108 0.123 0.154	0.004					4.83 5.61 5.97 6.76	1.93 2.74 3.12 3.91	0.10						
008 009 010 011 012	0.297 0.329 0.360 0.422 0.485	0.185 0.217 0.248 0.310 0.373						7.54 8.36 9.14 10.72 12.32	4.70 5.51 6.30 7.87 9.47						0.189 0.220 0.250 0.312 0.375	4.80 5.59 6.35 7.92 9.53
	+0.002 -0.000	+0.000 -0.002						+0.050 -0.000	+0.000 -0.050						+0.000 -0.002	+0.000 -0.050
013 014 015 016 017	0.550 0.613 0.675 0.738 0.800	0.438 0.501 0.563 0.626 0.688		.015 .005	.094	.149	.207	13.97 15.57 17.15 18.75 20.32	11.13 12.73 14.30 15.90 17.48		0.38 0.13	2.39	3.78	5.26	0.441 0.504 0.566 0.629 0.691	11.20 12.80 14.38 15.98 17.55
018 019 020 021 022	0.863 0.925 0.991 1.053 1.116	0.751 0.813 0.879 0.941 1.004	0.005					21.92 23.50 25.17 26.75 28.35	19.08 20.65 22.33 23.90 25.50	0.13					0.753 0.815 0.881 0.943 1.006	19.13 20.70 22.38 23.95 25.55
023 024 025 026 027 028	1.178 1.241 1.303 1.366 1.428 1.491	1.066 1.129 1.191 1.254 1.316 1.379						29.92 31.52 33.10 34.70 36.27 37.87	27.08 28.68 30.25 31.85 33.43 35.03						1.068 1.131 1.193 1.256 1.318 1.381	27.13 28.73 30.30 31.90 33.48 35.08

Recommended for static applications only.

Metric sizes.

					Вс	ore Siz	es per	MIL-G-	5514F						Cha acc. to	nges AS4716
			Inch	ı						mn	ı				Inch	mm
Dash	øA	øF	D	R	Gro	ove W	/idth	øA	øF	D	R	Gro	ove W	/idth	øF	øF
INO	Dia.	Dia.	Clearance	Kaa.	+0.	010/-0	.000	Dia.	Dia.	Clearance	Kaa.	+(J.25/-C		Dia.	Dia.
	+0.002	+0.000	Max.		G ₀	Gı	G ₂	+0.050	+0.000	Max.		G ₀	G	G ₂	+0.000	+0.000
110	0.550	0.372	-					13.97	9.45						0.379	9.63
111	0.613	0.435						15.57	11.05						0.441	11.20
112	0.738	0.560						18.75	14.22						0.565	14.35
114	0.800	0.622						20.32	15.80						0.627	15.93
115	0.863	0.685						21.92	17.40						0.689	17.50
117	0.991	0.813						25.17	20.65						0.817	20.75
118 119	1.053	0.875	0.005					26.75 28.35	22.23	0.13					0.879 0.942	22.33 23.93
120	1 1 7 9	1 000	0.000					20.00	25.40						1.002	25.49
120	1.241	1.063						31.52	25.40						1.066	27.08
122 123	1.303 1.366	1.125 1.188						33.10 34.70	28.58 30.18						1.128 1.191	28.65 30.25
124	1.428	1.250						36.27	31.75						1.253	31.83
125	1.491	1.313						37.87	33.35						1.316	33.43
126	1.553	1.375						39.45 41.05	34.93						1.378	35.00
128 129	1.678 1.741	1.500 1.563						42.62 44.22	38.10 39.70						1.503 1.566	38.18 39.78
	+0.002	+0.000						+0.050	+0.000						+0.000	+0.000
100	-0.000	-0.002	-					-0.000	-0.050	-					-0.002	-0.050
130	1.805	1.689						45.85	41.33						1.693	41.43
132 133	1.930 1.992	1.752 1.814						49.02 50.60	44.50 46.08						1.756 1.818	44.60 46.18
134	2.055	1.877	0.006	.015	141	183	245	52.20	47.68	0.15	0.38	3 58	4 65	6.22	1.881	47.78
135	2.118	1.940	0.000	.005		.100	.245	53.80	49.28	0.15	0.13	0.50	4.00	0.22	1.944	49.38
136	2.180	2.002						55.37 56.97	50.85						2.008	50.95 52.55
138 139	2.305 2.368	2.127 2.190						58.55 60.15	54.03 55.63						2.131 2.194	54.13 55.73
140	2,430	2,252						61.72	57.20						2,256	57.30
141	2.493	2.315						63.32	58.80						2.319	58.90
142	2.555	2.377						64.90	60.38						2.381	60.48
143	2.680	2.502						68.07	63.55						2.506	63.65
145	2.743	2.565	0.007					69.67	65.15	0.18					2.569	65.25
146 147	2.805	2.627						71.25	66.73 68.33						2.631 2.694	66.83 68.43
148	2.930	2.752						74.42	69.90						2.756	70.00
210	2.993	0.748						76.02 25.17	19.00						0.750	19.05
211	1.053	0.810						26.75	20.57						0.812	20.63
212	1.178	0.873						29.92	23.75						0.936	23.77
214	1.241	0.998	0.005	.025	.188	.235	.304	31.52	25.35	0.13	0.64	4.78	5.97	7.72	0.999	25.37
215 216	1.303	1.060		.0՝10				33.10 34.70	26.92		0.25				1.064 1.124	27.03
217	1.428	1.185						36.27	30.10						1.186	30.12
218	1.491	1.248						37.87 39.45	31.70						1.249	31.72

Recommended for static applications only.

Metric sizes.

					Вс	ore Siz	es per	MIL-G-5	514F						Char acc. to	nges AS4716
			Inch	ו						mn	ı				Inch	mm
Dash No	ø A Bore	ø F Groove	D Digm	R Rad	Gro +0	ove W	idth	ø A Bore	ø F Groove	Diam	R Rad	Gro	ove W	/idth	ø F Groove	ø F Groove
110	Dia.	Dia.	Clearance	nuu.	Go.	610, 0		Dia.	Dia.	Clearance	nau.	G			Dia.	Dia.
	+0.002	+0.000	max.		00	01	02	+0.050	+0.000	Mux.		00		02	+0.000	+0.000
220 221 222	1.616 1.678 1.741	1.373 1.435 1.498	0.005					41.05 42.62 44.22	34.87 36.45 38.05	0.13					1.374 1.436 1.499	34.90 36.47 38.07
223 224 225 226 227	1.867 1.992 2.118 2.243 2.368	1.624 1.749 1.875 2.000 2.125	0.006					47.42 50.60 53.80 56.97 60.15	41.25 44.42 47.63 50.80 53.98	0.15					1.625 1.750 1.876 2.001 2.126	41.28 44.45 47.65 50.83 54.00
228 229 230 231 232	2.493 2.618 2.743 2.868 2.993	2.250 2.375 2.500 2.625 2.750						63.32 66.50 69.67 72.85 76.02	57.15 60.33 63.50 66.68 69.85						2.251 2.376 2.501 2.626 2.751	57.18 60.35 63.53 66.70 69.88
233 234 235 236 237	3.118 3.243 3.368 3.493 3.618	2.875 3.000 3.125 3.250 3.375	0.007	.025 .010	.188	.235	.304	79.20 82.37 85.55 88.72 91.90	73.03 76.20 79.38 82.55 85.73	0.18	0.64 0.25	4.78	5.97	7.72	2.876 3.001 3.126 3.251 3.376	73.05 76.23 79.40 82.58 85.75
238 239 240 241 242	3.743 3.868 3.993 4.118 4.243	3.500 3.625 3.750 3.875 4.000						95.07 98.25 101.42 104.60 107.77	88.93 92.10 95.28 98.45 101.63						3.501 3.626 3.751 3.876 4.001	88.93 92.10 95.28 98.45 101.63
243 244 245 246 247	4.368 4.493 4.618 4.743 4.868	4.125 4.250 4.375 4.500 4.625	0.008					110.95 114.12 117.30 120.47 123.65	104.80 107.98 111.15 114.33 117.50	0.20					4.126 4.251 4.376 4.501 4.626	104.80 107.98 111.15 114.33 117.50
325 326 327 328 329	1.867 1.992 2.118 2.243 2.368	1.495 1.620 1.746 1.871 1.996	0.006					47.42 50.60 53.80 56.97 60.15	37.97 41.15 44.35 47.52 50.70	0.15						
330 331 332 333 334	2.493 2.618 2.743 2.868 2.993	2.121 2.246 2.371 2.496 2.621						63.32 66.50 69.67 72.85 76.02	53.87 57.05 60.22 63.40 66.57							
335 336 337 338 339	3.118 3.243 3.368 3.493 3.618	2.746 2.871 2.996 3.121 3.246	0.007	.035 .020	.281	.334	.424	79.20 82.37 85.55 88.72 91.90	69.75 72.92 76.10 79.27 82.45	0.18	0.89 0.51	7.14	8.48	10.77		
340 341 342 343 344 345	3.743 3.868 3.993 4.118 4.243 4.368	3.371 3.496 3.621 3.746 3.871 3.996						95.07 98.25 101.42 104.60 107.77 110.95	85.62 88.80 91.97 95.15 98.32 101.50							
346 347 348 349	4.493 4.618 4.743 4.868	4.121 4.246 4.371 4.496	0.008					114.12 117.30 120.47 123.65	104.67 107.85 111.02 114.20	0.20						

Recommended for static applications only.

Metric sizes.

					Вс	ore Siz	es per	MIL-G-5	5514F						Cha acc. to	nges AS4716
			Inch	ı						mm	ı				Inch	mm
Dash No	ø A Bore Dia.	ø F Groove Dia.	Diam. Clearance Max.	R Rad.	Gro +0. G ₀	ove W 010/-0 G ₁	/idth 0.000 G ₂	ø A Bore Dia.	ø F Groove Dia.	Diam. Clearance Max.	R Rad.	Gro +(G ₀	ove W 0.25/-0 G ₁	/idth 0.00 G ₂	ø F Groove Dia.	ø F Groove Dia.
	+0.003 -0.000	+0.000 -0.003						+0.076 -0.000	+0.000 -0.076							
425 426 427 428 429	4.974 5.099 5.224 5.349 5.474	4.497 4.622 4.747 4.872 4.997						126.34 129.51 132.69 135.86 139.04	114.22 117.40 120.57 123.75 126.92							
430 431 432 433 434	5.599 5.724 5.849 5.974 6.099	5.122 5.247 5.372 5.497 5.622	0.009		.375	.475	.579	142.21 145.39 148.56 151.74 154.91	130.10 133.27 136.45 139.62 142.80	0.23		9.53	12.07	14.71		
435 436 437 438 439	6.224 6.349 6.474 6.724 6.974	5.747 5.872 5.997 6.247 6.497						158.09 161.26 164.44 170.79 177.14	145.97 149.15 152.32 158.67 165.02							
440 441 442 443 444 445	7.224 7.474 7.724 7.974 8.224 8.474	6.747 6.997 7.247 7.497 7.747 7.997						183.49 189.84 196.19 202.54 208.89 215.24	171.37 177.72 184.07 190.42 196.77 203.12							
446	8.974	8.497	0.010					227.94	215.82	0.25						
	+0.004 -0.000	+0.000 -0.004						+0.100 -0.000	+0.000 -0.100							
447 448 449 450 451	9.474 9.974 10.474 10.974 11.474	8.997 9.497 9.997 10.497 10.997						240.64 253.34 266.04 278.74 291.44	228.52 241.22 253.92 266.62 279.32							
452 453 454 455 456	11.974 12.474 12.974 13.474 13.974	11.497 11.997 12.497 12.997 13.497	0.009	.035 .020	.375	.475	.579	304.14 316.84 329.54 342.24 354.94	292.02 304.72 317.42 330.12 342.82	0.23	0.89 0.51	9.53	12.07	14.71		
457 458 459 460	14.474 14.974 15.474 15.974	13.997 14.497 14.997 15.497						367.64 380.34 393.04 405.74	355.52 368.22 380.92 393.62							

Recommended for static applications only. The above dimensions are for reference only, Shamban cannot be held responsible for printing errors etc. 600 Series (3/8") cross section AS4832 recommended for diameters above -442.

Table XIII Overview of MIL-G-5514F Groove sizes

Series	00	00	10	00	20	00	30	00	40	00
Gland Depth	0.056	1.42	0.089	2.26	0.122	3.09	0.186	4.72	0.239	6.06
Gland Width Zero BUR *)	0.094	2.39	0.141	3.58	0.188	4.78	0.281	7.14	0.375	9.53
Gland Width One BUR *)	0.149	3.78	0.183	4.65	0.235	5.97	0.334	8.48	0.475	12.07
Gland Width Two BUR *)	0.207	5.26	0.245	6.22	0.304	7.72	0.424	10.77	0.579	14.71

Metric sizes.

*) BUR = Back-up ring

AS4716 has variation in groove depth and width. See spec. for detail

■ Hardware Dimensions per MIL-G-5514F and AS4716, Rod

If You use AS4716 hardware dimensions, please contact Your Shamban Sales Engineer for recommendation.

Figure 39 Installation Drawing

Table XIV Groove Dimensions, Rod

					R	od Siz	es per	MIL-G-5	514F						Char acc. to J	nges AS4716
			Inch	ו						mm	ı				Inch	mm
Dash No	ø B Rod Dia.	ø E Groove Dia.	D Diam. Clearance Max.	R Rad.	Gra +0. G ₀	ove W 010/-0 G ₁	G 2	ø B Rod Dia.	ø E Groove Dia.	Diam. Clearance Max.	R Rad.	Gra +(G ₀	ove W).25/-0 G ₁	.00 G ₂	ø E Groove Dia.	ø E Groove Dia.
	+0.000 -0.001	+0.001 -0.000						+0.000 -0.025	+0.025 -0.000						+0.001 -0.000	+0.025 -0.000
004 005 006 007	0.076 0.108 0.123 0.154	0.190 0.221 0.235 0.266	0.004					1.93 2.74 3.12 3.91	4.83 5.61 5.97 6.76	0.10						
008 009 010 011 012	0.185 0.217 0.248 0.310 0.373	0.297 0.329 0.360 0.422 0.485						4.70 5.51 6.30 7.87 9.47	7.54 8.36 9.14 10.72 12.32						0.294 0.327 0.359 0.421 0.484	7.47 8.31 9.12 10.69 12.29
	+0.000 -0.002	+0.002 -0.000						+0.00 -0.05	+0.05 -0.00						+0.002 -0.000	+0.05 -0.00
013 014 015 016 017	0.435 0.498 0.560 0.623 0.685	0.547 0.610 0.672 0.735 0.797		.015 .005	.094	.149	.207	11.05 12.65 14.22 15.82 17.40	13.89 15.49 17.07 18.67 20.24		0.38 0.13	2.39	3.78	5.26	0.545 0.608 0.670 0.733 0.795	13.84 15.44 17.02 18.62 20.19
018 019 020 021 022	0.748 0.810 0.873 0.935 0.998	0.860 0.922 0.985 1.047 1.110	0.005					19.00 20.57 22.17 23.75 25.35	21.84 23.42 25.02 26.59 28.19	0.13					0.858 0.920 0.983 1.045 1.108	21.79 23.37 24.97 26.54 28.14
023 024 025 026 027 028	1.060 1.123 1.185 1.248 1.310 1.373	1.172 1.235 1.297 1.360 1.422 1.485						26.92 28.52 30.10 31.70 33.27 34.87	29.77 31.37 32.94 34.54 36.12 37.72						1.170 1.233 1.295 1.358 1.420 1.483	29.72 31.32 32.89 34.49 36.07 37.67

Recommended for static applications only.

Metric sizes.

					R	od Siz	es per	MIL-G-5	514F						Char acc. to	nges AS4716
			Inch	1						mn	ı				Inch	mm
Dash	øB	øE	D	R	Gro	ove W	lidth	øB	øE	D	R	Gro	ove W	lidth	øE	øE
No	Rod Dia.	Groove Dia.	Diam. Clearance	Rad.	+0.	010/-0	0.000	Rod Dia.	Groove Dia.	Diam. Clearance	Rad.	+().25/-0	0.00	Groove Dia.	Groove Dia.
			Max.		G ₀	G ₁	G ₂			Max.		G ₀	G ₁	G ₂		
	+0.000 -0.002	+0.002						+0.00 -0.05	+0.05 -0.00						+0.002 -0.000	+0.05 -0.00
110	0.373	0.551						9.47	14.00						0.546	13.87
111	0.435 0.498	0.613						11.05	15.57						0.609 0.672	15.47
113 114	0.560	0.738						14.22 15.82	18.75 20.35						0.734	18.64 20.24
115	0.620	0.001						17.40	21.02						0.950	21.92
115	0.885	0.883						19.00	21.92						0.859	21.82
117	0.810	0.988						20.57	25.10						0.985	25.02
118 119	0.873	1.051	0.005					22.17 23.75	26.70 28.27	0.13					1.048 1.110	26.62 28.19
120	0.998	1.176						25.35	29.87						1.173	29.79
121	1.060	1.238						20.92	31.45						1.235	31.37
122 123	1.123 1.185	1.301 1.363						28.52 30.10	33.05 34.62						1.298 1.360	32.97 34.54
124	1.248	1.426						31.70	36.22						1.423	36.14
125	1.373	1.551						34.87	39.40						1.548	39.32
127	1.435	1.613		.015				36.45	40.97		0.38				1.610	40.89
128	1.498	1.676	0.006	005	.141	.183	.245	38.05	42.57	0.15	0.13	3.58	4.65	6.22	1.673	42.49
130	1.500	1.700		.000				41.22	45 75		0.10				1.798	45.67
131	1.685	1.863						42.80	47.32						1.860	47.24
132	1.740	1.920						44.40 45.97	46.92 50.50						1.923	48.84 50.39
134	1.873	2.051						47.57	52.10						2.047	51.99
135	1.936	2.114						49.17	53.70						2.110	53.59
130	2.061	2.170	0.007					52.35	56.87	0.18					2.235	56.77
138	2.123	2.301 2.364						53.92 55.52	58.45 60.05						2.297 2.360	58.34 59.94
140	2.248	2.426						57.10	61.62						2,422	61.52
141	2.311	2.489						58.70	63.22						2.485	63.12
142	2.373	2.551 2.614						60.27 61.87	64.80 66.40						2.547	64.69 66.29
144	2.498	2.676						63.45	67.97						2.672	67.87
145	2.561	2.739						65.05	69.57 71.15						2.735	69.47 71.04
147	2.686	2.864						68.22	72.75						2.860	72.64
148 149	2.748 2.811	2.926 2.989						69.80 71.40	74.32 75.92						2.922 2.985	/4.22 75.82
210	0.748	0.991						19.00	25.17						0.989	25.12
211 212	0.810 0.873	1.053						20.57 22.17	26.75 28.35						1.051	26.70 28.32
213 214	0.935	1.178 1.241						23.75 25.35	29.92 31.52						1.177 1.240	29.90 31.50
215	1.040	1 202		0.25				26.00	22.10		0.44				1 200	22.07
215	1.123	1.303	0.005	.025	.188	.235	.304	28.52	34.70	0.13	0.84	4.78	5.97	7.72	1.362	34.67
217 218	1.185 1.248	1.428 1.491		.010				30.10 31.70	36.27 37.87		0.25				1.427 1.490	36.25 37.85
219	1.310	1.553						33.27	39.45						1.552	39.42
221	1.435	1.678						36.45	42.62						1.677	41.02
222	1.498	1./41						38.05	44.22						1./40	44.20

Recommended for static applications only.

Metric sizes.

					Re	od Size	es per	MIL-G-5	514F						Char acc. to	nges AS4716
			Inch	ı						mn	า				Inch	mm
Dash	ø B	øE	D	R	Gro	ove W	/idth	øB	øE	D	R	Gro	ove W	/idth	øE	øE
No	Rod Dia.	Dia.	Diam. Clearance	Rad.	+0.	010/-0	.000	Rod Dia.	Groove Dia.	Diam. Clearance	Rad.	+().25/-C	.00	Dia.	Dia.
			Max.		G ₀	G ₁	G ₂			Max.		G ₀	G ₁	G ₂		
	+0.000 -0.002	+0.002 -0.000						+0.00 -0.05	+0.05 -0.00						+0.000 -0.000	+0.050 -0.000
223 224	1.623 1.748	1.866 1.991	0.006					41.22 44.40	47.40 50.57	0.15					1.865 1.990	47.37 50.55
225 226 227 228 229	1.873 1.998 2.123 2.248 2.373	2.116 2.241 2.366 2.491 2.616						47.57 50.75 53.92 57.10 60.27	53.75 56.92 60.10 63.27 66.45						2.115 2.240 2.365 2.490 2.615	53.72 56.90 60.07 63.25 66.42
230 231 232 233 234	2.498 2.623 2.748 2.873 2.997	2.741 2.866 2.991 3.116 3.240	0.007	.025 .010	.188	.235	.304	63.45 66.62 69.80 72.97 76.12	69.62 72.80 75.97 79.15 82.30	0.18	0.64 0.25	4.78	5.97	7.72	2.740 2.865 2.990 3.115 3.239	69.60 72.77 75.95 79.12 82.27
235 236 237 238 239	3.122 3.247 3.372 3.497 3.622	3.365 3.490 3.615 3.740 3.865						79.30 82.47 85.65 88.82 92.00	85.47 88.65 91.82 95.00 98.17						3.364 3.489 3.614 3.739 3.864	85.45 88.62 91.80 94.97 98.15
240 241 242 243 244	3.747 3.872 3.997 4.122 4.247	3.990 4.115 4.240 4.365 4.490						95.17 98.35 101.52 104.70 107.87	101.35 104.52 107.70 110.87 114.05						3.989 4.114 4.239 4.364 4.489	101.32 104.50 107.67 110.85 114.02
245	4.372	4.615						111.05	117.22						4.614	117.20
246 247	4.497 4.622	4.740 4.864	0.008					114.22 117.40	120.40 123.57	0.20					4.739 4.864	120.37 123.55
325 326 327	1.498 1.623 1.748	1.870 1.995 2.120	0.006					38.05 41.22 44.40	47.50 50.67 53.85	0.15						
328 329 330 331 332	1.873 1.998 2.123 2.248 2.373	2.245 2.370 2.495 2.620 2.745						47.57 50.75 53.92 57.10 60.27	57.02 60.20 63.37 66.55 69.72							
333 334 335 336 337	2.498 2.623 2.748 2.873 2.997	2.870 2.995 3.120 3.245 3.369	0.007	.035	.281	.334	.424	63.45 66.62 69.80 72.97 76.12	72.90 76.07 79.25 82.42 85.57	0.18	0.89	7.14	8.48	10.77		
338 339 340 341 342	3.122 3.247 3.372 3.497 3.662	3.494 3.619 3.744 3.869 3.994		.020				79.30 82.47 85.65 88.82 92.00	88.75 91.92 95.10 98.27 101.45		0.51					
343 344 345	3.747 3.872 3.997	4.119 4.244 4.369						95.17 98.35 101.52	104.62 107.80 110.97							
346 347 348 349	4.122 4.247 4.372 4.497	4.494 4.619 4.744 4.869	0.008					104.70 107.87 111.05 114.22	114.15 117.32 120.50 123.67	0.20						

Recommended for static applications only.

Metric sizes.

					R	od Siz	es per	MIL-G-5	514F						Cha acc. to	nges AS4716
			Inch	ו						mn	า				Inch	mm
Dash No	ø B Rod Dia.	ø E Groove Dia.	Diam. Clearance	R Rad.	Gro +0.	ove W 010/-0	/idth).000	ø B Rod Dia.	ø E Groove Dia.	Diam. Clearance	R Rad.	Gro +(ove W 0.25/-0	idth .00	ø E Groove Dia.	ø E Groove Dia.
	+0.000	+0.003	Mux.		00	01	02	+0.000	+0.076	Mux.		00	01	02		
425 426 427 428 429	4.497 4.622 4.747 4.872 4.997	4.974 5.099 5.224 5.349 5.474						114.22 117.40 120.57 123.75 126.92	126.34 129.51 132.69 135.86 139.04							
430 431 432 433 434	5.122 5.247 5.372 5.497 5.622	5.599 5.724 5.849 5.974 6.099	0.009					130.10 133.27 136.45 139.62 142.80	142.21 145.39 148.56 151.74 154.91	0.23						
435 436 437 438	5.747 5.872 5.997 6.247	6.224 6.349 6.474 6.724						145.97 149.15 152.32 158.67	158.09 161.26 164.44 170.79							
439 440 441 442 443	6.497 6.747 6.997 7.247 7.497	6.974 7.224 7.474 7.724 7.974		.035	.375	.475	.579	165.02 171.37 177.72 184.07 190.42	177.14 183.49 189.84 196.19 202.54		0.89 0.51	9.53	12.07	14.71		
444 445 446	7.747 7.997 8.497	8.224 8.474 8.974		.020				196.77 203.12 215.82	208.89 215.24 227.94							
	+0.000 -0.004	+0.004 -0.000						+0.000 -0.100	+0.100 -0.000							
447 448 449 450 451	8.997 9.497 9.997 10.497 10.997	9.474 9.974 10.474 10.974 11.474	0.010					228.52 241.22 253.92 266.62 279.32	240.64 253.34 266.04 278.74 291.44	0.25						
452 453 454 455 456	11.497 11.997 12.497 12.997 13.497	11.974 12.474 12.974 13.474 13.974						292.02 304.72 317.42 330.12 342.82	304.14 316.84 329.54 342.24 354.94							
457 458 459 460	13.997 14.497 14.997 15.497	14.474 14.974 15.474 15.974						355.52 368.22 380.92 393.62	367.64 380.34 393.04 405.74							

Recommended for static applications only. Metric sizes. The above dimensions are for reference only, Shamban cannot be held responsible for printing errors etc.

600 Series (3/8") cross section AS4832 recommended for diameters above -442.

Table XV Overview of MIL-G-5514F Groove sizes

Series	00	00	10	00	20	00	30	00	40	00
Gland Depth	0.056	1.42	0.089	2.26	0.122	3.09	0.186	4.72	0.239	6.06
Gland Width Zero BUR *)	0.094	2.39	0.141	3.58	0.188	4.78	0.281	7.14	0.375	9.53
Gland Width One BUR *)	0.149	3.78	0.183	4.65	0.235	5.97	0.334	8.48	0.475	12.07
Gland Width Two BUR *)	0.207	5.26	0.245	6.22	0.304	7.72	0.424	10.77	0.579	14.71

Metric sizes.

*) BUR = Back-up ring

AS4716 has variation in groove depth and width. See spec. for detail

Γ

■ Turcon[®] VL Seal[®]*

Description

The Turcon[®] VL Seal[®] incorporates theoretical and empirical experience, in a new generation seal for the 21st century.

The VL Seal[®] has been developed over the past few years as a new generation unidirectional Rod seal. The design has taken the latest empirical and theoretical experience into account in order to optimise performance, friction, leakage and service life. This has been achieved through in-house testing and qualified in customer applications. See test section.

The back-pumping effect allows the seal to relieve pressure trapped between tandem seals or between seals and double-acting scrapers.

Method of Operation

The sealing mechanism of the Turcon[®] VL Seal[®] (Figure 40) is based on the hydrodynamic properties of the seal. The specially formed seal edge has a steep contact pressure gradient on the high pressure side and a shallow contact pressure gradient on the low pressure side. This ensures that the fluid film adhering to the piston rod is returned to the high pressure chamber on the return stroke of the rod. This prevents the micro-fluid layer, that is carried out of the high pressure chamber when the piston rod is extended, from causing leaks.

This return delivery property prevents the build-up of interstage pressure normally associated with tandem seal configurations (Figure 41). Interstage pressure depends on the system pressure speed, the stroke length and the groove design.

Patent pending.
 (US Patent No. 6,497,415)

Figure 41 Pressure Distribution in Tandem Installation

Advantages

Compared with current rod seals, the following parameters have been improved:

- Seal gland: in accordance with MIL-G-5514 / AS4716.
 0 b/u width (not available in 000 series).
- Tighter leakage control.
- Lower friction: (reduced contact area between seal and mating surface).
- Simplicity of design, using standard size O-Ring.
- Featuring the Turcon[®] Stepseal[®] back pumping effect.
- The seal geometry prevents seal roll at low or shuffling pressure.
- Recommended surface finish max. Ra 0.2 µm / 8 µinch.

Technical Data

Operating pressure: 35 MPa (5000 psi)

Speed: up to 15.0 m/s (49.2 ft/s) with reciprocating movements

Temperature range:-54°C to +200°C (-65°F to +390°F) (depending on elastomer material)

Clearance: As per MIL-G-5514F/AS4716

Media: Mineral oil-based hydraulic fluids, flame retardant hydraulic fluids, environmentally safe hydraulic fluids (bio-oils), Phosphate Ester, water and others, depending on the elastomer material (see Table IV, page 16)

Avoid combining extreme limits.

Materials

See Table I, page 12 and Table III, page 15.

Series

The VL Seal[®] follows the series as described in MIL-G-5514F. We recommend that the guidelines for static and dynamic sizes be followed to ensure a good service life for the seal.

For further information on the VL Seal[®] in a non-standard diameter size, please contact your Shamban sales engineer.

Figure 42 Relationship Between the Profile Cross-Section

Ordering Example

VL Seal[®] rod, with Notch. Series No. REL 2 from Table XVI

Dash No: 220

Turcon[®]: Material: T05, see Table I, page 12

- 1 = 100 Series 4=400 Series 2=200 Series
 - 3=300 Series
- Notching is recommended for service with high frequency pulsating pressure, where pressure can be built in the downstream upper corner. The notch will act as a draining channel.

Table XVI Installation Dimensions

Radial Clearance Series Standard Extended O-Ring **Cross-Section** Range Range 5000 psi 1500 psi 3000 psi 0.15mm REL 1 -110 to -149 6 to 100mm 0.40mm 0.25mm 1.78mm 0.236"-3.937" 0.016" 0.010" 0.006' 0.070' 0.20mm 0.008″ 10 to 200mm 0.40mm 0.25mm 2.62mm REL 2 -210 to -247 0.394"-7.874" 0.016" 0.010" 0 103" -325 to -349 20 to 400mm 0.30mm 0.20mm 3.53mm RFI 3 0.50mm 0.139' 787"-15.748 0.020" 0.012" 0.008" 0.35mm REL 4 -425 to -460 35 to 999mm 0.60mm 0.25mm 5.33mm 1.387"-39.330" 0.014" 0.010" 0.024" 0.210"

Only available in "0" Back-up groove width but can be used in 1 and 2 Back-up grooves using Spacer Rings.

The seal is designed for MIL-G5514F/AS4716 groove geometries, but higher clearances can be accommodated according to service conditions.

The seal is designed for 0 b/u groove width, but installation may be faciliated by the use of a 1 b/u groove width and filling the groove with a back-up ring, as a spacer.

Ordering Example

VL Seal[®] rod, metric sizes. Series No. REL 2 from Table XVI

Rod dia.: 30.0 mm

Material: Turcon[®]: T05, see Table I, page 12

Note: O-Ring must be ordered seperately. Contact your Shamban sales engineer for dash-sizes.

Seals for 1 & 2 back-up ring groove widths can be used with solid b/u-rings (a scarfcut is only recommended for small diameters < 25 mm / 1 inch) to ease installation. Special back-up rings can be designed and supplied for unique application requirements.

The standard range can be installed in closed groove b/u down to 20 mm (-211) 0 b/u. Smaller diameters down to 16 mm (-114) can be installed for 1 or 2 b/u groove width. Back-up ring to be installed afterwards.

Edition April 2004

Not available in 000 Series.

Turcon[®] VL Seal[®]

Test Data

Internal Test Re	port	Inc : 540	
Test fluid:	MIL-H-83282	lime : 5.0002+00	
Pressure:	0-3000 psi cyclic (0-207 bar)		
Stroke:	76 mm (3 inches)	5,600e+01	
Rate:	1 Hz	_ 4.520e+01	
Temp.:	121°C (250°F)	3.440e+01	
Rod size:	-214, IHCP R2 0.1-0.2 μm (4-8 μinch)	2.360+01	
		_ 1.280e+01	
Single Seal:	250 000 cycles	_ 2.000e+00	
Average wear:	-0.20 %	3.800e+00	
Average leakage:	0	-1.960e+01	
		3.040e+01	
Tandem Seal:	500 000 cycles	-4.120e+01	
Average wear:	Primary: -0.42 %	-5.200e+01	y .
	Secondary: -0.11 %		Î
Average leakage:	0.11 g ~ 3 drops. (total)	REZF00001	<u>z</u> >×
	۹	Comp 22 of Cauchy Stress	1
Material:	Iurcon [®] T19		

Figure 43 Internal Test Report

Customer Test Report

Working Condition

Rod size:	-114 (15.82 mm)
	hard-chrome
Pressure:	2320 psi (160 bar)
Fluid:	Phosphate Ester
Rate:	5 Hz max.
Requirement:	Zero leakage with friction below 10 daN (2.2 lb)
Temp.:	Ambient

Table XVII Test Results

Seal Type	8,000	10,200	10,800	16,000
	hours	hours	hours	hours
Turcon [®] T Seal	40 drops	400 drops	800 drops Test stopped	-
Turcon [®]	3	4	5	40
VL Seal [®]	drops	drops	drops	drops

Figure 44 Installation

Problem

Low service life, with original equipment. Hard chrome.

Solution

New design with tungsten carbide rod and sealing system from Shamban.

Figure 45 Primary Flight Control

Requirement

Tandem rod seal, with pressure relieving feature.

High frequency up to 10 Hz.

Long service life with exeptional leak-free performance (30 000 flight hours).

Solution

Shamban tandem VL ${\rm Seal}^{\, \$}$ with excellent performance on tungsten carbide rod.

\bigcirc

Turcon[®] Plus Seal[®]II

Description

The Turcon[®] Plus Seal[®]II, with a long, successful history, is an evolutionary improvement of the Double Delta[®]. It is fully interchangeable with the Double Delta[®]II in most applications.

Figure 46 Turcon[®] Plus Seal[®]II

Method of Operation

The sealing effect of the Plus Seal[®]II comes from the slight interference of the seal cap with the rod or bore combined with the preload from the compressed elastomer. As the pressure increases, the system pressure joins forces with the elastomer and increases the loading of the seal cap significantly.

The substitution of the proprietary lemon shaped elastomer under the Plus Seal[®]II cap instead of a traditional O-Ring allows the cap to be thicker for increased wear life. The new elastomer element also activates the seal cap over a wider area providing a lower unit loading.

Figure 47 Pressure Distribution

The Plus Seal[®]II elastomer is carefully profiled to fit inside the cap and supports the corners to prevent them from sinking away from the sealing surface. This reduces the oil film under the seal to an absolute minimum.

Figure 48 Turcon[®] Plus Seal[®]II Cross-Section

By choosing the grooved version, a further decrease in the film thickness can be achieved. The grooves increase the number of pressure peaks that the oil film must pass under. Another advantage of the grooved seal is that the grooves serve as an oil reservoir when the seal is static. When the seal starts to move, the oil film is quickly re-established under the sliding surface to lubricate the seal. This is especially important in applications where the stroke is shorter than the seal width and it provides a general improvement in wear life. Ask for Shamban test report R1069.

Figure 49 Turcon[®] Grooved Plus Seal[®]II

The zero back-up width of the seal is generally preferred even if a wider groove is available in smaller diameters. The extra space in a wider groove is used more efficiently when filled with back-up rings. This increases the seal life without notably changing the friction.

Turcon[®] Plus Seal[®]II

Figure 50 Use of Back-up Rings (BUR) with Plus Seal[®]II

Where the Plus Seal[®]II is subjected to pressure from both sides alternately, it should always be equipped with sidewall notches, which allow the pressure to properly activate the elastomer (Fig. 51). The Plus Seal[®]II for piston use is equipped with notches as standard whereas the rod version must be specified with notches if they are deemed necessary.

Figure 51 Plus Seal[®]II with Notches

Using a seal without notches may allow "blow-by", which is a situation where the pressure shoots over the top of the Plus Seal[®]II cap and forces the seal down into the groove. See also SAE document AIR 1243.

Advantages

- Good static and dynamic sealing effect
- High abrasion resistance
- Long life
- Low friction, high efficiency
- Stick-slip free starting
- No vulcanization even during long static periods
- Easy installation foolproof
- Available for all MIL-G-5514F/AS4716 sizes.

Technical Data

Operating pressure:	35 MPa (5000 psi) (up to 70 MPa (10 000 psi) with Stakbaks [®]).
Speed:	up to 15.0 m/s (49.2 ft/s) with reciprocating movements
Temperature range:	-54°C to +200°C (-65°F to +390°F) (depending on elastomer material)
Clearance:	As per MIL-G-5514F/AS4716, larger with Stakbaks [®]
Media:	Mineral oil-based hydraulic fluids, flame retardant hydraulic fluids, environmentally safe hydraulic fluids (bio-oils), Phosphate Ester, water and others, depending on the elastomer material (see Table IV, page 16)

Avoid combining extreme limits.

Materials

See Table I, page 12 and Table III, page 15.

Series

The Plus Seal[®]II follows the series as described in MIL-G-5514F/AS4716. We recommend that the guidelines for static and dynamic sizes be followed to ensure a good service life for the seal.

For further information on the Plus Seal[®]II in a non-standard diameter size, please contact your Shamban sales engineer.

Figure 52 Relationship Between the Profile Cross-Section

Back-up Rings (BUR) for Plus Seal[®]II

The following Back-up Rings are especially designed for use with the Plus ${\rm Seal}^{\circledast}{\rm II}.$ The same BUR is used for both rod and bore.

For installation in closed grooves with rod/piston diameter smaller than 18 mm (3/4 inch), we recommend cut Back-up Rings.

Figure 53 Plus Seal[®]II with Back-up Rings

For pressures above 35 MPa (5000 psi), we recommend using one or two Stakbak $^{\rm B}$ Back-up Rings with the Plus Seal $^{\rm B}$ II.

Figure 54 Plus Seal[®]II Set with Stakbaks[®]

The Stakbak[®] Back-up Ring for piston seals has a rigid HiMod[®] anti-extrusion outer ring bonded to a Turcon[®] inner ring. A wide range of tests at 55 MPa (8000 psi) shows that the Stakbak[®] efficiently protects the seal cap from extrusion and improves the lifetime of the seal at lower pressures.

The use of Stakbak[®] Back-up Rings is recommended when the Plus Seal[®]II is used with increased diametral clearance, high pressure or temperature exceeding 135°C (275°F).

Ordering Example

Grooved Plus Seal[®]II piston, 1 b/u width, Notch.¹) Series No. PP21 from Table XVIII, page 53.

Dash No: 220

Material: Turcon[®]: T05, see Table I, page 12 Turel[®]: NE, see Table III, Page 15

¹⁾ Please see note page 53

Ordering Example

Back-up Ring for a one back-up width groove, for use with Plus Seal[®] II Series No. BUS1

Dash No: 220

Material: T19

Please Note that Back-up Rings must be ordered separately!

This example is for ordering the Back-up Ring as shown in Fig. 53.

Table XVIII Turcon[®] Plus Seal[®]II Types

Seal	Gr	oove Type: MI	L-G-5514F / A	Comments	
Туре		Width		Dia. Size Range	
	0 b/u	1 b/u	2 b/u	Standard dash numbers	
Piston Plus Seal®II ¹⁾	PP50 (S34750)	PP81 (S34581)	PP82 (\$34582)	004 to 460	Foolproof design. 0 b/u width Plus Seal [®] II with Back-up Ring recommended for low friction. Installable even in small closed grooves, but care must be taken.
Piston grooved Plus Seal®II ¹⁾	PP52 (S30852) ⁴⁾ PP60 (S34760)	PP21 (S34721)	PP22 (S34722)	004 to 460	Grooves in surface cap increase wear life and leakage control. Friction is reduced due to the decreased surface area as well as better lubrication of the surface. Ask for Shamban test report R1069.
Rod Plus Seal®II ¹⁾	RP75 (S30775)	RP71 (S34571)	RP72 (S34572)	004 to 460	Foolproof design. 0 b/u width Plus Seal [®] II with Back-up Ring recommended for low friction. Installable even in small closed grooves, but care must be taken.
Rod grooved Plus Seal®II ¹⁾	RP55 (S30855)	RP11 (S34711)	RP12 (\$34712)	004 to 460	Grooves in surface cap increase wear life and leakage control. Friction is reduced due to the decreased surface area as well as better lubrication of the surface. Ask for Shamban test report R1069.
Piston Plus Seal [®] II Stakbak [®] Set	Not available	PP61 ²⁾ (S37061)	PP62 (S37062)	020 to 460	For pressure above 35 MPa (5000 psi) For long service life. For high temperature protection of seal up to +260°C (500°F).1 b/u configuration incorporates only 1 BUR. Available also for size -020 to -028 and -118 to -149 even though this is static range! For more on Stakbaks [®] , see BUR section.
Rod Plus Seal [®] II Stakbak [®] Set	Not available	RP51 ²⁾ (S37051)	RP52 (S37052)	020 to 460	For pressure above 35 MPa (5000 psi) For long service life. For high temperature protection of seal up to +260°C (500°F).1 b/u configuration incorporates only 1 BUR. Available also for size -019 to -028 and -117 to -149 even though this is static range! For more on Stakbaks [®] , see BUR section.
Rod Plus Seal®PR Set	Not available	RP81 ³⁾ (S38671)	RP82 (S38672)	110 to 460	Pressure relieving Plus Seal [®] II, used as primary seal in tandem rod seal concept. Care must be taken for correct installation. 1 b/u width incorporate only upstream. Also available for piston applications.

1) Notching Options:

Piston seals are always delivered as standard with notch. To omit, change 5th character to "W". Ex. PP50<u>W.</u> Rod seals are always delivered as standard without notch. To include notch, change 5th character to "N". Ex. RP75<u>N</u>. Notches are not possible in 000 series, 0 b/u.

2) Supplied with back-up ring for the downstream side only.

3) Supplied with spacer ring for the upstream side only.

4) Used in North America.

■ Turcon[®] Double Delta[®]II

Description

The Turcon[®] Double Delta[®]II is the original seal design that was developed to improve the performance of the O-Ring and Back-up Rings that were used in the MIL-G-5514F/AS4716 and older versions of that standard.

The Turcon[®] Double Delta[®]II represents a balance between the cap thickness and the squeeze of the O-Ring within the MIL-standard groove.

Method of Operation

The O-Ring preloads the seal cap in the thin, flexible middle section and provides good leakage control even at low pressures.

In addition to the O-Ring preload, when the system pressure is added the oil film under the seal is further reduced. Double Delta[®]II will always allow an oil film to be dragged across the sealing surface. This oil film is necessary to ensure a long service life for the Double Delta[®].

For use of notches and grooves, please see the section Plus $\mathsf{Seal}^{\texttt{B}}\mathsf{II},$ pages 50 - 53.

Figure 56 Grooved Double Delta[®]II with Notch

Advantages

- Good static sealing effect
- Low friction, high efficiency
- Stick-slip-free starting
- No adhesion to hardware even during long static periods
- Available for all MIL-G-5514F/AS4716 sizes.
- Can be made for all O-Ring sizes.

Technical Data

Operating pressure: 35 MPa (5000 psi)

Speed:	15.0 m/s (49,2 ft/s)
Temperature range	:-54°C to +200°C (-65°F to +390°F) (depending on elastomer material)
Clearance:	As per MIL-G-5514F/AS4716
Media:	Mineral oil-based hydraulic fluids, flame retardant hydraulic fluids, environmentally safe hydraulic fluids (bio-oils), Phosphate Ester, water and others, depending on the elastomer material (see Table IV, page 16)

Materials

See Table I, page 12 and Table III, page 15.

Ordering Example

Grooved Double Delta[®]II for rod, 1 b/u width, Series No. RD51 from Table XIX, page 55

Dash No: 212

Material: T99

Note: O-Ring must be ordered separately. Sizes follow dash number.

Series

Figure 57 Relationship between the Profile Cross-Section

Table XIX Turcon[®] Double Delta[®] II Types

The Double Delta[®]II follows the series as laid out in MIL-G-5514F/AS4716. We recommend that the guidelines for static and dynamic sizes be followed to ensure a good service life for the seal.

The Double Delta[®]II is also available for the (British Std.) B.S.4518 O-Ring grooves.

For further information on the Double Delta[®] II in nonstandard size, please contact your Shamban sales engineer.

Seal	Gr	oove Type: MI	L-G-5514F/ A	Comments	
Туре		Width		Dia. Size Range	
	0 b/u	1 b/u	2 b/u ⁽²⁾	Standard dash numbers	
Piston Double Delta®II (1)	PD60 (S30660)	PD61 (S30661)	PD62 (S30662)	Standard dash sizes	Foolproof design. Zero back-up width version preferred. Cost-effective solution.
Rod Double Delta®II (1)	RD50 (S30650)	RD51 (S30651)	RD52 (S30652)	Standard dash sizes	Foolproof design. Zero back-up width version preferred. Cost-effective solution.
Piston grooved Double Delta®II ⁽¹⁾	PD80 (S32860)	PD81 (S32861)	PD82 (\$32862)	Standard dash sizes	Grooves in the surface of the cap increase wear life and leakage control. For 000 serie grooves only available in 2 b/u width.
Rod grooved Double Delta®II ⁽¹⁾	RD80 (S32850)	RD81 (S32851)	RD82 (S32852)	Standard dash sizes	Grooves in the surface of the cap increase wear life and leakage control. For 000 serie grooves only available in 2 b/u width.

(1) Option Notches:

Piston seals are always delivered as standard with notch. To omit, change 5th character to "W". Ex. PD60<u>W</u>. Rod seals are always delivered as standard without notch. To include notch, change 5th character to "N". Ex. RD81<u>N</u>. Notches are not available in 100 series, 0 + 1 b/u for grooved version.

Busak+Shamban

(2) Seal width:

For 2 b/u groove width, 0 or 1 b/u Double Delta[®] II recommended with Back-up Rings.

Turcon[®] Wedgpak[®]

Description

The Turcon[®] Wedgpak[®] consists of a proprietary triangular elastomer supported by two Delta shaped Back-up Rings that prevent the elastomer from spiraling or rolling under severe working conditions.

Figure 58 Turcon[®] Wedgpak[®]

Method of Operation

The small elastomer contact area of the Wedgpak[®] design results in a slipper seal-like performance with low static and dynamic friction. At the same time, the elastomer wipes the surface efficiently providing excellent leakage control. The Wedgpak[®] Back-up Rings provide support and extrusion protection for the elastomer.

Originally designed as a static seal, the Wedgpak[®] has now proved to be an excellent seal for dynamic applications typically demanded in flight control actuators. The Wedgpak[®] is also used in gas/oil separators both at high and low pressures.

For further information on Wedgpak[®] dynamic performance, please contact your Shamban sales engineer and ask for Test Report R1059.

Advantages

- Excellent static and dynamic sealing effect
- Low friction, high efficiency
- Available for all MIL-G-5514F/AS4716 sizes
- Foolproof installation

Technical Data

Operating pressure: 35 MPa (5000 psi)

Speed:	3.0 m/s (9.8 ft/s)
Temperature range	e:-54°C to +200°C (-65°F to +390°F) (depending on elastomer material)
Clearance:	As per MIL-G-5514F/AS4716
Media:	Mineral oil-based hydraulic fluids, flame retardant hydraulic fluids, environmentally safe hydraulic fluids (bio-oils), Phosphate Ester, water and others, depending on the elastomer material (see Table IV, page 16)

Materials

See Table I, page 12 and Table III, page 15.

Series

The Wedgpak[®] follows the series as described in MIL-G-5514F/AS4716. We recommend that the guidelines for static and dynamic sizes be followed to ensure a good service life for the seal.

Figure 59 Relationship between the Profile Cross-Section for one Back-up Groove Width

Table XX Wedgpak[®] Types

Seal	Groove Type: MIL-G-5514F/ AS4716			′ AS4716	Comments
Туре		Width		Dia. Size	
	0 b/u	1 b/u	2 b/u	Standard dash size	
Piston Wedgpak®	PA80 (S34780)	PA81 (S34781) preferred	PA82 (S34782) preferred	004 to 460	Foolproof design. Excellent static and dynamic leakage control. Cut Back-up Rings are not recommended or available by standard part number for the following dash sizes: 0 b/u: Greater than -019, -131, -230 and -341 1 b/u: Greater than -028, -142, -235, -349 and -440 2 b/u: Greater than -028, -149, -244, -349 and -447
Rod Wedgpak®	RA70 (S34770)	RA71 (S34771) preferred	RA72 (S34772) preferred	004 to 460	Foolproof design. Excellent static and dynamic leakage control. Cut Back-up Rings are not recommended or available by standard part number for the following dash sizes: 0 b/u: Greater than -020, -132, -230 and -342 1 b/u: Greater than -028, -142, -236, -349 and -440 2 b/u: Greater than -028, -149, -244, -349 and -447
Piston Wedgpak [®] EP	N.A.	PA1 (\$38621)	PA2 (\$38622)	004 to 460	For pressure > 35 MPa (5000 psi) and increased extrusion gap. Cut Back-up Rings are not recommended or available by standard part number for the following dash sizes: 0 b/u: Greater than -019, -131, -230 and -341 1 b/u: Greater than -028, -142, -235, -349 and -440 2 b/u: Greater than -028, -149, -244, -349 and -447
Rod Wedgpak [®] EP	N.A.	RA1 (S38611)	RA2 (S38612)	004 to 460	For pressure > 35 MPa (5000 psi) and increased extrusion gap. Cut Back-up Rings are not recommended or available by standard part number for the following dash sizes: 0 b/u: Greater than -020, -132, -230 and -342 1 b/u: Greater than -028, -142, -236, -349 and -440 2 b/u: Greater than -028, -149, -244, -349 and -447

Ordering Example

Wedgpak[®] for piston, 1 b/u width, Series No. PA81 from Table XX

Dash No: 212 Material: T99 (standard recommendation) see Table I, Page 12

Note! For small installation in closed grooves with rod/piston diameter smaller than 18 mm (3/4 inch), we recommend cut Back-up Rings. This is specified by adding "C" in the 5th character of the part no.

Example: PA81<u>C</u>M212AT99NE.

(EP extrusion rings are always delivered with cut.)

Ordering Example

For the Wedgpak[®]EP we have the following options:

*) **Note!** Other Compounds are available for the outer ring. Contact your Shamban sales engineer.

Case Story

Figure 60 Main Rotor Damper, Helicopter

Problem

Low service life with original equipment.

Solution

New design with tungsten carbide rod and sealing system from Shamban.

Conditions on coated rod

Pressure:	Max.30 bar (435 psi)
Speed:	400 mm/sec.
Temperature:	-54°C - +135°C
	(-65°F - +275°F)
Media:	MIL-H-5606
Frequency:	6 Hz

Other Application Successes

- ADCAPPS fuel pump swashplate
- A330/A340, B747, L1011, DC10 Engine driven hydraulic pumps
- C17 OBIGGS constant speed motor
- V22 swashplate actuator
- RJ hydraulic pump
- B757/ B767 ram air turbine
- C130 gun elevation actuator
- B727 brake valve
- Space shuttle payload damper
- CH-53 nose landing gear strut
- A310 control drive shaft
- MD-80 nose gear retract actuator

Turcon[®] Hatseal[®]II

Description

The Turcon[®] Hatseal[®]II is one of the original high performance seals Shamban developed for the aircraft industry. It combines the advantages of the elastomer contact seal with those of the slipper seal.

The Hatseal[®]II was designed for demanding aerospace applications and is operating successfully in both military and commercial hydraulic components. The Hatseal[®]II combines the low leakage advantages of an elastomer contact seal and the long life characteristics of Turcon[®] contact seals.

Figure 61 Turcon[®] Hatseal[®]II

Method of Operation

The Hatseal[®]II can be divided into 3 zones each with a specific function, (Figure 62).

Figure 62 Hatseal[®]II, 3 Zone Specific Function

Zone 1 Elastomer contact area

The elastomer has a small but well-defined contact area where the oil film on the rod is reduced almost to zero. Due to the minimal elastomer contact, the friction of the seal is low. This ensures long life performance of the seal.

Zone 2 Slipper Seal area

In this area the Turcon[®] platform is energized by the main body of the elastomer to work like a slipper seal. This section will often run dry but since the Turcon[®] materials have very low coefficients of friction, this will not damage the seal. In the unlikely event of a damaged elastomer lip in Zone 1, the slipper seal part will continue to work and give a leakage performance like a slipper seal.

Zone 3 Back-up Ring area

The built-in Back-up Ring protects the seal from extrusion even at high operating pressures or speeds. For increased extrusion gaps and higher temperatures, a number of special versions have been developed (see Figure 67).

Advantages

- Built-in redundancy
- Zero leakage
- Stick-slip free operation
- High frequency applications

Technical Data

Operating pressure: 35 MPa (5000 psi)

Speed:	3.0 m/s (9.8 ft/s)
Temperature range	:-54°C to +200°C (-65°F to +390°F) (depending on elastomer material)
Clearance:	As per MIL-G-5514F/AS4716, higher with corner reinforcement.
Media:	Mineral oil-based hydraulic fluids, flame retardant hydraulic fluids, environmentally safe hydraulic fluids (bio-oils), Phosphate Ester, water and others, depending on the elastomer material (see Table IV, page 16)

Materials

See Table I, page 12 and Table III, page 15.

Table XXI Turcon[®] Hatseal[®]II Types

Seal	Groove Type: Rod MIL-G-5514F/ AS4716			Comments	
Туре	Width		Dia. Size		
	1 b/u	2 b/u	Range		
3 piece Hatseal [®] II	RH31 (S34831)	RH32 (S34832)	-110 to -330	To be used for easier installation with rod diameters below 31.75 mm (1 1/4″). For dimensions below 20.0 mm (0.787″) a split gland is recommended.	
2 piece Hatseal [®] II	RH51 (S34851)	RH52 (S34852)	-110 to -460	For dimensions below 31.75 mm (1 1/4") a split gland is recommended. Installation is made easier by heating up the Turcon [®] part.	

Ordering Example

Hatseal $^{\circledast}\text{II}$, 2 b/u width, 3 pieces. Series No. RH32 from Table XXI

Dash No: 212

Material: T99 (standard recommendation) see Table I, page 12

Notes:

The Hatseal[®]II can only be ordered in sizes from -110 and up. Only available in rod seal configurations. For similar performance on pistons seal, see the section on Wedgpak[®].

Series

The Hatseal[®]II is designed to fit the MIL-G-5514F/AS4716 gland specification. We recommend that the guidelines for static and dynamic sizes be followed to ensure a good service life.

For further information on the Hatseal[®]II in non-standard sizes, please contact your Shamban sales engineer.

Figure 63 Relationship Between the Profile Cross-Section

Application Examples

Figure 64 A320 Shock Absorber Hatseal[®]II

Hatseal[®]II installed as primary rod seal and with a Wedgpak[®] as spare seal. The seals are kept lubricated all the time and have shown remarkably long lifetimes.

Figure 65 A320 Rudder Actuator Hatseal[®]II Grooved Plus Seal[®]II and Scraper

Hatseal[®]II installed as primary rod seal (single seal) to prevent leakage at both high and low pressure as well as temperature. Qualification test: 5.5 mill. cycles.

Figure 66 EH 101 Rotor Control Hatseal[®]II and Stepseal[®]K

Hatseal[®]II positioned as secondary rod seal to prevent leakage at low pressure. Primary seal takes the peak of the system pressure, thereby protecting the Hatseal[®]II. See page 8.

Alternative Hatseal[®]II Designs

Over the years, a number of special versions of the Hatseal[®]II have been designed to meet specific Customer demands such as large extrusion gap, or the ability to withstand hardware deflection under load. These designs are still available, but we recommend that they only be specified after a Shamban engineer has been consulted.

Figure 67 Alternative Hatseal[®]II Designs

Turcon[®] T-Seal

Description

The Turcon[®] T-Seal consists of a T-shaped elastomeric sealing element supported by a Turcon[®] Back-up Ring on both sides.

The T-Seal is available for zero, one and two Back-up Ring widths and all sizes of rod and piston glands as per MIL-G-5514F/AS4716.

Figure 68 Turcon[®] T-Seal

Method of Operation

The T-Seal utilizes an optimally designed elastomer component to maximize leakage control while offering excellent extrusion protection in a symmetric design.

The large elastomer footprint makes the T-Seal a good static seal. The one and two Back-up Ring widths offer especially good protection against extrusion.

Although the T-Seal is satisfactory in light duty dynamic applications, the Wedgpak[®] design is preferred for more demanding dynamic applications. Ask for test report R1059.

Figure 69 Comparison Between T-Seal and O-Ring with Back-up Rings

Advantages

- Good static sealing effect
- Cost-effective
- Available for all sizes of MIL-G-5514F/AS4716
- Approved for a large number of National Stock Numbers
- Provides bi-directional sealing

Technical Data

Operating	pressure:	35	MPa	(5000	psi)	static
		21	MPa	(3000	psi)	dynamic

Speed:	1 m/s (3.3ft/s)
Temperature range	:-54°C to +200°C (-65°F to +390°F) (depending on elastomer material)
Clearance:	As per MIL-G-5514F/AS4716
Media:	Mineral oil-based hydraulic fluids, flame retardant hydraulic fluids, environmentally safe hydraulic fluids (bio-oils), Phosphate Ester, water and others, depending on the elastomer material (see Table IV, page 16)

Materials

See Table I, page 12 and Table III, page 15.

Series

The T-Seal follows the series as described in MIL-G-5514F/AS4716. We recommend that the guidelines for static and dynamic sizes be followed to ensure a good service life for the seal.

For more information on the T-Seal in non-standard sizes, please contact your Shamban sales engineer.

Figure 70 Relationship Between the Profile Cross-Sections

Table XXII T-Seal Types

Seal	Groove Type: MIL-G-5514F/ AS4716			Comments	
Туре		Width		Dia. Size Range	
	0 b/u	1 b/u	2 b/u	Standard dash size	
Piston T-Seal	PB20 (\$38420)	PB21 (\$38421)	PB22 (\$38422)	006 to 460	Good static sealing effect. Wedgpak [®] preferred for all dynamic applications.
Rod T-Seal	RB10 (S38410)	RB11 (338411)	RB12 (S38412)	005 to 460	Good static sealing effect. Wedgpak [®] preferred for all dynamic applications.

Ordering Example

T-Seal 2 b/u width, Series No. RB12 from Table XXII, page 63

Dash No: 210

Material: T99, see Table I, page 12

<u>Order No.</u> <u>RB12</u> <u>C</u> <u>M212</u> <u>A</u> <u>T99</u> <u>NG</u>
Series No.
0 = Uncut Back-up Ring <u>C = Cut Back-up Ring</u>
MIL-G-5514F/AS4716 size
Seal part includes
Certificate of conformance (C.C.)
Turcon [®] material code
Elastomer material code

Note! For small installation in closed grooves with rod/piston diameter smaller than 18 mm (3/4 inch), we recommend cut Back-up Rings. This is specified by adding "C" in the 5th character of the part no. Example: PB21**C**M212AT99NG.

T-Seal References

- F/A-18 NLG shock strut
- F/A-18 Nose wheel steering actuator
- F/A-18 Horizontal stabilizer actuator
- F-16 MLG strut
- F-16 Integrated servoactuator
- F-16 Rudder actuator
- F-15 Ratio changer actuator
- F-15 Yaw ratio controller
- UH60 Tail rotor actuator
- B737/B757 Main and nose landing gear

■ Turcon[®] AQ-Seal[®]5* (For use in MIL-Standard Grooves)

Description

The Turcon $^{\texttt{B}}$ AQ-Seal $^{\texttt{B}}5$ is a patented development of the proven standard AQ-Seal $^{\texttt{B}}.$

The AQ-Seal[®]5 is a double-acting piston seal designed for reciprocating or helical movements.

The AQ-Seal[®]5 is comprised of a dynamic sealing element in Turcon[®] with a limited footprint elastomeric QUAD-RING^{®1)} Seal inset centrally into its sealing face. The seal ring is energized by two elastomeric O-Rings.

Method of Operation

The AQ-Seal[®]5 combines the benefits of a low-friction Turcon[®] slipper seal with the high sealing characteristics of an elastomeric seal by incorporating a limited foot print QUAD-RING[®] Seal in the dynamic sealing face. This optimizes leakage control while minimizing friction.

The unique characteristics of the AQ-Seal[®]5 are the special seal profile with a defined seal edge and the use of two O-Rings as energizing elements to optimize the pressure profile.

Diametral Clearance

The AQ-Seal[®]5 can be installed in MIL-G-5514 F/AS4716 (-300 and -400 sizes only) glands using the standard diametral clearance. If a larger clearance is needed or if the hardware deflects excessively during operation, the diametral clearance will increase. In this case we recommend the use of Slydring[®] bearing rings with the AQ-Seal[®]5. Please see section "Turcite[®] Slydring[®]/Luytex[®] Slydring[®]", page 114.

* Patent-No. EP 0 424 372

1) Reg. trade mark of Minnesota rubber

Advantages

- High sealing effect in applications requiring media separation, e.g. fluid/fluid or fluid/gas
- Double security through the combination of low-friction special materials with elastomer seals
- Low gas permeation rate
- Higher pressure application limit, higher sliding speed compared to the T-Seal
- Outstanding sliding properties, no stick-slip effect
- Designed for zero back-up ring width groove

Technical Data

Operating pressure: 35 MPa (5000 psi)

Speed:	up to 3.0 m/s (9.8 ft/s) with reciprocating movements
Temperature range	:-54°C to +200°C (-65°F to +390°F) (depending on elastomer material)
Clearance:	As per MIL-G-5514F/AS4716, higher with Stakbaks [®]
Media:	For all common hydraulic fluids, including bio-oils and gases (see Table IV, page 16)

Materials

See Table I, page 12 and Table III, page 15.

Series

The AQ-Seal[®]5 follows the 300 and 400 Series described in the MIL-G-5514F/AS4716.

For more information on the AQ-Seal[®]5 in non-standard sizes, please contact your Shamban sales engineer.

Figure 72 Relationship Between the Profile Cross-Section

Application Example

Figure 73 Bootstrap Reservoir with Turcon[®] AQ-Seal[®]5

Case Story

The AQ-Seal[®]5 is used in the Jetstream 31 propeller pitch adjuster mechanism with the following working conditions: Temperature: -50° C to $+120^{\circ}$ C (-58° F to $+248^{\circ}$ F) Pressure: 0.35 MPa to 5.5 MPa

Fluid: Service life: 0.33 MPd to 5.5 M (50 to 800 psi) MIL-L-23699C 7500 hours

Figure 74 Jetstream 31 Propellers (by courtesy of Dowty Aerospace Propellers)

Ordering Example

AQ-Seal[®]5, Series No. PQ20 (Old Series No. S38620)

Dash No: 330

Material: T99 (standard), see Table I, Page 12

Note: O-Ring must be ordered seperately. Sizes can be found in Table XXIII, page 67.

Edition April 2004

Installation AQ-Seal[®]5, Series No. PQ20 (Old Series No. S38620)

Figure	75	Installation	Drawing
--------	----	--------------	---------

Table XXIII Groove Dimensions

	Bore	ø A e Dia.	ø b Groove Dia.		G	R	O- Ring	QUAD- RING [®] Dash	
Dash No	Inch	mm	Inch	mm	Inch	Inch	No	No	
	+0.002 -0.000	+0.05 -0.00	+0.000 -0.002	+0.00 -0.05	/ mm	/ mm	AS 568 A	AS 568 A	
325 326 327 328 329	1.867 1.992 2.118 2.243 2.368	47.42 50.60 53.80 56.97 60.15	1.495 1.620 1.746 1.871 1.996	37.97 41.15 44.35 47.52 50.70			128 130 132 133 135	031 032 033 034 035	
330 331 332 333 334	2.493 2.618 2.743 2.868 2.993	63.32 66.50 69.67 72.85 76.02	2.121 2.246 2.371 2.496 2.621	53.87 57.05 60.22 63.40 66.57	.281	.020	137 139 141 143 145	036 037 038 039 040	
335 336 337 338 339	3.118 3.243 3.368 3.493 3.618	79.20 82.37 85.55 88.72 91.90	2.746 2.871 2.996 3.121 3.246	69.75 72.92 76.10 79.27 82.45	.291	.035 0.51	147 149 151 151 152	041 041 042 042 043	
340 341 342 343 344	3.743 3.868 3.993 4.118 4.243	95.07 98.25 101.42 104.60 107.77	3.371 3.496 3.621 3.746 3.871	85.62 88.80 91.97 95.15 98.32	7.39	0.89	152 153 153 154 154	043 044 044 045 045	
345 346 347 348 349	4.368 4.493 4.619 4.743 4.868	110.95 114.12 117.32 120.47 123.65	3.996 4.121 4.246 4.371 4.496	101.50 104.67 107.85 111.02 114.20			155 155 156 156 157	046 046 047 047 048	
	+0.002 -0.000	+0.05 -0.00	+0.000 -0.002	+0.00 -0.05	.375				
425 426 427 428 429 430	4.974 5.099 5.224 5.349 5.474 5.599	126.34 129.51 132.69 135.86 139.04 142.21	4.497 4.622 4.747 4.872 4.997 5.122	114.22 117.40 120.57 123.75 126.92 130.10	.385 9.53 9.78		245 246 247 248 249 250	158 158 159 159 160 160	

Dash	ہ Bore	ø A Bore Dia.		ø B Groove Dia.		R	O- Ring Dash	QUAD- RING [®] Dash
Dash No	Inch	mm	Inch	mm	Inch	Inch	No	No
	+0.002 -0.000	+0.05 -0.00	+0.000 -0.002	+0.00 -0.05	/ mm	/ mm	AS 568 A	AS 568 A
431 432 433 434	5.724 5.849 5.974 6.099	145.39 148.56 151.74 154.91	5.247 5.372 5.497 5.622	133.27 136.45 139.62 142.80			251 252 253 254	161 161 162 162
435 436 437 438 439	6.224 6.349 6.474 6.724 6.974	158.09 161.26 164.44 170.79 177.14	5.747 5.872 5.997 6.247 6.497	145.97 149.15 152.32 158.67 165.02	.375	.020	255 256 257 259 259	163 163 164 165 166
440 441 442 443 444	7.224 7.474 7.724 7.974 8.224	183.49 189.84 196.19 202.54 208.89	6.747 6.997 7.247 7.497 7.747	171.37 177.72 184.07 190.42 196.77	.385 9.53	.035 0.51	260 261 262 263 264	167 168 169 170 171
445 446	8.474 8.974	215.24 227.94	7.997 8.497	203.12 215.82	9.78	0.89	265 267	172 174
	+0.002 -0.000	+0.05 -0.00	+0.000 -0.002	+0.00 -0.05				
447 448 449	9.474 9.974 10.474	240.64 253.34 266.04	8.997 9.497 9.997	228.52 241.22 253.92			269 271 273	176 178 179
450 451 452 453 454	10.974 11.474 11.974 12.474 12.974	278.74 291.44 304.14 316.84 329.54	10.497 10.997 11.497 11.997 12.497	266.62 279.32 292.02 304.72 317.42			275 276 277 278 278 278	180 181 182 183 184
455 456 457 458 459 460	13.474 13.974 14.474 14.974 15.474 15.974	342.24 354.94 367.64 380.34 393.04 405.74	12.997 13.497 13.997 14.497 14.997 15.497	330.12 342.82 355.52 368.22 380.92 393.62			279 279 280 280 281 281	185 186 187 188 189 190

Metric sizes.

■ Turcon[®] Variseal[®]

Design Concept

Variseal[®] is a spring-energized seal. The Variseal[®] performs reliably in a wide range of applications where conventional elastomeric seals fail due to chemical attack, extreme heat or cold, extrusion, friction or compression set. The basic Variseal[®] design has two elements:

- 1. A pressure-actuated, "U-shaped" jacket.
- 2. A metal spring.

The U-shaped jacket allows the system pressure to energize the sealing lips, forcing them against the mating hardware with higher load as the system pressure rises.

The Variseal[®] is machined to very close tolerances, using only premium-grade materials. Each design is available in imperial and metric dimensions. The standard size range includes diameters from 3 mm (0.12 in) to 2500^{*} mm (8 ft).

Figure 76 Turcon[®] Variseal[®] Energized by the System Pressure

Spring Load

The Variseal[®] is energized by a spring made from stainless steel, Hastelloy[®], or Elgiloy[®]. The spring provides the load required for sealing when the system pressure is too low to fully actuate the lips. The spring also compensates for variations in gland tolerances and normal wear of the seal. As a seal loading device, a metal spring is more accurate for the control of friction than other devices, such as O-Rings.

See Spring Types, Table XXIV, page 70 for spring selection.

Figure 77 Spring Force

Jacket Material

Variseal[®] jackets are made from a variety of high-performance polymers. There are two categories of material available:

- Turcon[®] Engineered-polymer compounds, based on low-friction Turcon[®] resins, are found in the majority of Variseal[®] applications.
- 2. **Zurcon[®]** Compounds have outstanding abrasion-resistance.

See Turcon $^{\$}$ and Zurcon $^{\$}$ Seal Materials, pages 12 and 13 for material selection.

High Performance

The unique design and material properties of the Variseal[®] provide design engineers with an assortment of solutions for difficult applications. Some of the outstanding capabilities of the Variseal[®] include:

- Very low friction.
- High speed service.
- Universal chemical compatibility.
- Cryogenic service to -273°C (-459.67°F).
- High-temperature service to +260°C (+500°F).
 Higher peak temperatures are possible.
- Permanent elasticity with immunity to aging, embrittlement and compression set.
- No lubrication required.

*) with extended size capability available.

Spring Types

A metal spring is incorporated in the design to provide elasticity to the seal. The spring makes the seal permanently elastic despite changes in operating temperature, pressure or chemicals. Each of the spring types found in the Variseal[®] has unique properties that affect seal performance. The two most important properties of the spring - besides the corrosion resistance of the metal - are its load value and deflection range. The spring load has influence on the sealing ability, friction, and wear rate of the seal. The deflection range determines the ability of the Variseal[®] to take up wear and compensate for variations in gland dimensions due to hardware tolerances or eccentricity.

V-Spring (Cantilever)

This spring, used in the Variseal[®]M types and the Roto Variseal[®], operates as a set of "cantilever beams" extending from an arc at the bottom of the spring. The shape of the spring causes the load to be focused on the front edge of the sealing lip, contributing to the positive

wiping action of the seal. A Cantilever-beam spring has a moderate load and deflection range.

Helical Spring

Helical spring, used in the Variseal[®]H types, has a much higher unit load and a shorter deflection range than the other spring types. It is therefore excellent for static applications or very slow speeds where friction and wear are not the primary concerns. The high spring load makes the Variseal[®]H suitable for applications with low temperatures. Under these conditions the 200 Series or larger is prefered.

Slantcoil[®] Spring

The patented Slantcoil[®] Spring, used in the Variseal[®]W, types consists of round wire formed into slanted coils. The coils load the seal radially.

The Slantcoil[®] Spring provides a unique spring-loading characteristic. The spring gives a relatively constant load over a wide deflection range. This allows more accurate control of friction during the working life of the seal.

Figure 78 The Graph Represents a General Comparison of Load Curves for the Three Spring Types. The "O" Indicates the Load Point when Installed in the Gland.

The 3 standard spring types can be found in the following table:

Table XXIV Spring Material Selection Guide

Media	Spring Materials	Spring Code
For general use with: Oil Grease Air Water, Steam Solvents Food, Drugs Gas	Stainless steel DIN mat. No. 1.4310 (X12CrNi177) AISI 301	S
For use in corrosive media with: Acids Caustics Sea water	Hastelloy [®] alloy C-276 Ni-Cr-Mo alloy DIN mat. No. 2.4819 UNS N10276	н
For petrochemical use with: Crude oil Sour gas	Elgiloy^{® 1) 2)} Co-Ni alloy UNSR30003	E

1) NACE - approved

2) Not available as Slantcoil[®] spring

Special Turcon[®] Variseal[®]Hi-Clean

All Variseal[®] with V-shaped springs are available with the spring groove filled with silicone.

The silicone prevents entrapment of biological contaminants in the seal, making the seal easier to clean.

The Variseal[®]Hi-Clean is also used in applications working in dirty environment such as mud, slurry or sand where the silicone maintains the flexibility of the spring and seal lips by keeping media out of the spring groove.

 $\mathsf{Variseal}^{\circledast}\mathsf{Hi}\text{-}\mathsf{Clean}$ is ordered by adding a (D) after the material code.

Example: RVC200350AT40SD

Hastelloy[®] is a registered Trade Mark of Cabot Corporation

Elgiloy[®] is a registered Trade Mark of Elgiloy Company

Figure 79 Turcon[®] Variseal[®]Hi-Clean

Busak+Shamban

Installation Recommendations for Rod, MIL-G-5514F/AS4716 Sizes Types M14, W14 and H14

Figure 80 Installation Drawing

Table XXVGroove Dimensions

Series	Rod Dia øB	n meter h9	Groove Diameter ²⁾	Groove Width	Radius	Radial Clearance ³⁾ D/2 max.			
	Standard Range	Extended ¹⁾ Range	ø A H9	L_{1 +.010}	r ₁	<2 MPa (300 psi)	<10 MPa (1500 psi)	<20 MPa (2900 psi)	<40 MPa (5800 psi)
000	.123 - 1.373	.123 - 3.997	øB + .112	.094	.010	.008	.004	.003	.002
100	.373 - 2.811	.185 - 5.497	øB + .178	.141	.015	.010	.006	.004	.003
200	.748 - 4.622	.248 - 8.997	øB + .244	.188	.015	.014	.008	.006	.003
300	1.498 - 4.497	.873 - 10.497	øB + .370	.281	.015	.020	.010	.008	.004
400	4.497 - 15.497	1.498 - 15.497	øB + .478	.375	.020	.024	.012	.010	.005

1) Available on request

²⁾ By diameters larger than "Recommended Range": The tolerance on øB and øA is changed from h9/H9 to h8/H8

Ordering Example

Turcon $^{\ensuremath{\mathbb{B}}}$ Variseal $^{\ensuremath{\mathbb{B}}}$ H, Series RV91.Rod diameter: $\ensuremath{\mathbb{B}}$ = 1.623 (MIL-G-5514F-326)Part No:RV910M326

Select the materials from Table I, page 12 and Table XXIV, page 70. The corresponding code numbers are appended to the Part No. Together these form the order number.

The order number for all intermediate sizes not shown in Table XXV can be determined following the example opposite.

Note that the series or cross section of the seal is automatically given by the sizes suitable for the selected dash number of MIL-G-5514F-326.

³⁾ For temperatures ≥ 80°C (176°F) we recommend reducing the radial clearance. At pressures > 40 MPa (5800 psi): D/2 max. use H8/h8.

In both cases we recommend that you contact your local Shamban representative.

<u>Order No. RV91 0 M326 A T40 S (D)</u>
Series No.
Standard
MIL-G-5514F/AS4716 size Seal part includes Certificate of conformance (C.C.)
Material Code - Turcon [®] Ring
Material Code - spring
Hi-Clean - option

Installation Recommendations for Bore, MIL-G-5514F/AS4716 Sizes Types M14, W14 and H14

Figure 81 Installation Drawing

Table XXVI Groove Dimensions

Series	Bore Diameter øA H9		Groove Diameter ²⁾	Groove Width	Radius		Radial Cla D/2	earance ³⁾ max.	
	Standard Range	Extended ¹⁾ Range	ø B h9	L_{1 +.010}	r 1	<2 MPa (300 psi)	<10 MPa (1500 psi)	<20 MPa (2900 psi)	<40 MPa (5800 psi)
000	.235 - 1.491	.235 - 4.118	øA112	.094	.010	.008	.004	.003	.002
100	.550 - 2.993	.360 - 5.680	øA178	.141	.015	.010	.006	.004	.003
200	.991 - 4.868	.485 - 9.243	øA244	.188	.015	.014	.008	.006	.003
300	1.867 - 4.868	1.241 - 10.868	øA370	.281	.015	.020	.010	.008	.004
400	4.974 - 15.974	1.974 - 15.974	øA478	.375	.020	.024	.012	.010	.005

¹⁾ Available on request

²⁾ By diameters larger than "Recommended Range": The tolerance on øA and øB is changed from h9/H9 to h8/H8

Ordering Example

Turcon[®] Variseal[®]M, Series PV93. Bore diameter: øA = 1.366 (MIL-G-5514F-216) Part No: PV930M216

Select the materials from Table I, page 12 and Table XXIV, page 70. The corresponding code numbers are appended to the Part No. Together these form the order number.

The order number for all intermediate sizes not shown in Table XXVI can be determined following the example opposite.

Note that the series or cross section of the seal is automatically following the sizes suitable for the selected dash number of MIL-G-5514/AS4716.

3) At pressures > 40 MPa (5800 psi): D/2 max. use H8/h8. We recommend that you contact your local Shamban sales engineer.

<u>Order No. PV93 0 M216 A T40 S (D)</u>						
Series No.						
Standard						
MIL-G-5514F/AS4716 size Seal part includes Certificate of conformance (C.C.)						
Material Code - Turcon [®] Ring						
Material Code - spring						
Hi-Clean - option						

Busak+ Shamban

Installation Recommendations for Rod, Metric Sizes Types M2, W and H

Figure 82 Installation Drawing

Table XXVII Groove Dimensions

Series	s Series No.		Rod Dia øB	meter h9	Groove Diameter	Groove Width	Radius		Radial Cl D/2	earance ³⁾ max.		
	M2	w	н	Standard Range	Extended ¹⁾ Range	ø A H9	L ₁ +0.2	r ₁	<2 MPa (300 psi)	<10 MPa (1500 psi)	<21 MPa (3000 psi)	<40 MPa (5800 psi)
000	RVA0	RVW0	RVE0	3.0 - 9.9	3.0 - 40.0	øB + 2.9	2.4	0.4	0.20	0.10	0.08	0.05
100	RVA1	RVW1	RVE1	10.0 - 19.9	6.0 - 200.0 ²⁾	øB + 4.5	3.6	0.4	0.25	0.15	0.10	0.07
200	RVA2	RVW2	RVE2	20.0 - 39.9	10.0 - 400.0 ²⁾	øB + 6.2	4.8	0.6	0.35	0.20	0.15	0.08
300	RVA3	RVW3	RVE3	40.0 - 119.9	20.0 - 700.0 ²⁾	øB + 9.4	7.1	0.8	0.50	0.25	0.20	0.10
400	RVA4	RVW4	RVE4	120.0 - 999.9	35.0 - 999.9 ²⁾	øB + 12.2	9.5	0.8	0.60	0.30	0.25	0.12
500	-	-	RVE5	1000.0 - 2500.9	80.0 -2500.0 ²⁾	øB + 19.0	15.0	0.8	0.90	0.50	0.40	0.20

1) Available on request

²⁾ By diameters larger than "Recommended Range": The tolerance on øB and øA is changed from h9/H9 to h8/H8

Ordering Example

Turcon[®] Variseal[®]H, Series RVE3. Rod diameter: øB = 80.0 mm (3.150 in) Part No: RVE300800

Select the materials from Table I, page 12 and Table XXIV, page 70. The corresponding code numbers are appended to the Part No. Together these form the order number.

The order number for all intermediate sizes not shown in Table XXVII can be determined by following the example shown opposite here.

³⁾ For temperatures ≥ 80°C (176°F) we recommend reducing the radial clearance. At pressures > 40 MPa (5800 psi): D/2 max. use H8/h8. In both cases we recommend that you contact your local Shamban representative.

<u>Order No. RVE3 0 0800 A T40 S (D)</u>
Series No.
Standard
Rod diameter x 10 Seal part includes Certificate of conformance (C.C.)
Material Code - Turcon [®] Ring
Material Code - spring
Hi-Clean - option

Installation Recommendations for Bore, Metric Sizes Types M2, W and H

Split groo ø A	ve	For installat see page 7	ion in stepped groove 6
Туре	M2	W	Н
Cross section	\bigcirc		
Series No.	PVA	PVW	PVE

Figure 83 Installation Drawing

Table XXVIII Groove Dimensions

Series	S	eries No).	Bore ø	Diameter A H9	Groove Dia.	ia. Width Radius Radial Clearance			earance ³⁾ nax.*		
	M2	w	н	Recommended Range	Extended ¹⁾ Range	ø B h9	L ₁ +0.2	r ₁	<2 MPa (300 psi)	<10 MPa (1500 psi)	<21 MPa (3000 psi)	<40 MPa (5800 psi)
000	PVA0	PVW0	PVE0	6.0 - 13.9	6.0 - 40.0	øA - 2.9	2.4	0.4	0.20	0.10	0.08	0.05
100	PVA1	PVW1	PVE1	14.0 - 24.9	10.0 -200.0 ²⁾	øA - 4.5	3.6	0.4	0.25	0.15	0.10	0.07
200	PVA2	PVW2	PVE2	25.0 - 45.9	16.0 -400.0 ²⁾	øA - 6.2	4.8	0.6	0.35	0.20	0.15	0.08
300	PVA3	PVW3	PVE3	46.0 -124.9	28.0 -700.0 ²⁾	øA - 9.4	7.1	0.8	0.50	0.25	0.20	0.10
400	PVA4	PVW4	PVE4	125.0 -999.9	45.0 -999.9 ²⁾	øA - 12.2	9.5	0.8	0.60	0.30	0.25	0.12
500	-	-	PVE5	1000.0 -2500.0	100.0 -2500.0 ²⁾	øA - 19.0	15.0	0.8	0.90	0.50	0.40	0.20

¹⁾ Available on request

²⁾ By diameters larger than "Recommended Range":The tolerance on ØA and ØB is changed from h9/H9 to h8/H8

Ordering Example

Turcon[®] Variseal[®]M2, Series PVA3. Bore diameter: øA = 80.0 mm (3.150 in) Part No: PVA300800

Select the materials from Table I, page 12 and Table XXIV, page 70. The corresponding code numbers are appended to the Part No. Together these form the order number.

The order number for all intermediate sizes not shown in Table XXVIII can be determined by following the example shown opposite here.

 $^{3)}$ For temperatures $\geq 80\,^{\circ}\text{C}$ (176 $^{\circ}\text{F}$) we recommend reducing the radial clearance. At pressures > 40 MPa (5800 psi): D/2 max. use H8/h8. In both cases we recommend that you contact your local Shamban representative.

<u>Order No. PVA3 0 0800 A T40 S (D)</u>						
Series No.						
Standard						
Bore diameter x 10 Seal part includes Certificate of conformance (C.C.)						
Material Code - Turcon [®] Ring						
Material Code - spring						
Hi-Clean - option						

Installation in Closed Grooves

Installation in split or lipped grooves is recommended. Installation in closed grooves is possible for rod and bore diameters according to the following tables.

Rod Seals

Figure 84 Installation in Closed Groove

Table XXIXInstallation of Variseal ®M Typesinto Closed Grooves

Ser	ies No.	ø B min.	ø B min.
Rod Seals		Inch	mm
000	RVAO	1.250	30.0
100	RVA1	2.750	70.0
200	RVA2	4.375	110.0
300	RVA3	11.750	300.0
400	RVA4	19.500	500.0

Piston Seals

Figure 85 Installation in Closed Groove

Table XXXI Installation of Variseal[®]M Types into Closed Grooves

Ser	ies No.	ø A min.	ø A min.
Piston Seals		Inch	mm
000	PVA0	1.375	35.0
100	PVA1	2.000	50.0
200	PVA2	2.750	70.0
300	PVA3	4.125	105.0
400	PVA4	5.500	140.0

Table XXXInstallation of
Variseal®H and Variseal®W Types
into Closed Grooves

:	Series No.	ø B min.	ø B min.
Rod Seals		Inch	mm
000	RVE0 and RVW0	1.000	30.0
100	RVE1 and RVW1	2.500	70.0
200	RVE2 and RVW2	4.250	110.0
300	RVE3 and RVW3	9.000	230.0
400	RVE4 and RVW4	15.250	400.0
500	RVE5	27.560	700.0

Metric sizes.

Table XXXIIInstallation of
Variseal®H and Variseal®W Types
into Closed Grooves

_	Series No.	ø A min.	ø A min.
Piston Seals		Inch	mm
000	PVE0 and PVW0	.750	20.0
100	PVE1 and PVW1	1.125	35.0
200	PVE2 and PVW2	1.750	48.0
300	PVE3 and PVW3	2.375	75.0
400	PVE4 and PVW4	3.750	95.0
500	PVE5	11.800	300.0

Installation in Stepped Grooves

Rod Seals

Piston Seals

Figure 87 Stepped Grooves, Piston

Figure 86 Stepped Grooves, Rod

Series	Lip X	Max. Radius	Min. Chamfer Z	Min. Seal ID
000	.008/.012	.005	.098	.250
100	.010/.015	.005	.138	.375
200	.015/.020	.007	.138	.750
300	.017/.023	.010	.177	1.000
400	.022/.028	.010	.295	2.000

Table XXXIII Groove Dimensions, Inch Sizes

Table XXXV Groove Dimensions, Inch Sizes

Series	Lip Y	Max. Radius	Min. Chamfer Z	Min. Seal ID
000	.008/.012	.005	.098	.375
100	.010/.015	.005	.138	.562
200	.015/.020	.007	.138	1.000
300	.017/.023	.010	.177	1.375
400	.022/.028	.010	.295	2.500

Table XXXIV Groove Dimensions, mm Sizes

Series	Rod Seal Types			Lip Height	Chamfer Length	Radius max.
	M2	w	н	X ¹⁾	Z min	r1
000	RVAO	RVWO	RVEO	0.4	2.5	0.4
100	RVA1	RVW1	RVE1	0.6	3.5	0.4
200	RVA2	RVW2	RVE2	0.7	3.5	0.6
300	RVA3	RVW3	RVE3	0.8	4.5	0.8
400	RVA4	RVW4	RVE4	0.9	7.5	0.8
500	-	-	RVE5	1.5	7.5	0.8

¹⁾ X max = 0.02 x øB

Table XXXVI Groove Dimensions, mm Sizes

Series	Piston Seal Types			Lip Height	Chamfer Length	Radius max.
	M2	w	н	Y ¹⁾	Z min	r1
000	PVA0	PVW0	PVEO	0.4	2.5	0.4
100	PVA1	PVW1	PVE1	0.6	3.5	0.4
200	PVA2	PVW2	PVE2	0.7	3.5	0.6
300	PVA3	PVW3	PVE3	0.8	4.5	0.8
400	PVA4	PVW4	PVE4	0.9	7.5	0.8
500	-	-	PVE5	1.5	7.5	0.8

¹⁾ Y max = 0.035 x øA

Note: The recommended dimensions for "Y", "X" and "Z" cannot always be achieved. Please contact your Shamban sales engineer.

Special Turcon[®] Variseal[®]

Turcon[®] Variseal[®] with extended heel

All Variseal[®] are available in extended heel versions to fit a one Back-up Ring groove.

The Variseal[®] with an extended heel is often used in high pressure applications, or when the extrusion gap is slightly larger than recommended.

Figure 88 Standard Turcon[®] Variseal[®] and Turcon[®] Variseal[®] with Extended Heel

Table XXXVII Groove Width

Series	Groove Width			
No.	LI	L3		
000	.094	.149		
100	.141	.183		
200	.188	.235		
300	.281	.334		
400	.375	.475		

Groove width for standard (L1) and for 1 Back-up Ring groove (L3) according to MIL-G-5514F/AS4716.

It is possible to order Variseal[®] with extended heel by using the standard part number, but change the third character as shown in table XXXVIII.

Table XXXVIII Part Numbers

Busak+Shamban

Variseal [®] Type	Standard Rod/Piston	Extended Heel Rod/Piston
Variseal [®] M2	RVA/PVA	RVB/PVB
Variseal [®] H	RVE/PVE	RVF/PVF
Variseal [®] W	RVW/PVW	RVX/PVX

$\mathbf{Turcon}^{\mathbb{R}} \mathbf{Variseal}^{\mathbb{R}}$

Case Story

Figure 89 Wing Gear Aft Trunnion Bearing, Boeing 747

Problem

B747 operators have experienced migration of Boeing Scraper from the spherical bearing gland.

Boeing requested that Shamban provides improvement to existing scraper design.

Solution

Shamban Variseal[®]Hi-Clean.

 $\mathsf{Turcon}^{\$}$ Variseal ${}^{\$}$ Scraper easier to install than existing seal.

Notches allow grease to relieve if overpressured during servicing.

Scraper lip energized by cantilever spring.

Boeing approved Shamban as preferred scraper option.

■ Turcon[®] Back-up Ring (BUR)

Description

Shamban developed the Turcon[®] BUR as an improvement to the original leather rings. Military standards were set up for spiral ring type, scarfcut (single turn type) and solid ring (uncut type). The BUR is a rectangular size cross section ring, installed for seal extrusion protection.

Figure 90 Turcon[®] Back-up Ring

Method of Operation

The BUR is installed between the O-Ring and the groove wall, separating the O-Ring from the clearance gap.

Figure 91 Single Acting Compared to Double Acting Sealing System

Advantages

- Extrusion protection
- Extending seal life
- Low cost

Technical Data

Operating pressure	: 21 Mpa (3000 psi) Standard design (Turcon [®] T01) 35 MPa (5000 psi) Standard design Turcon [®] with fillers 55 MPa (8000 psi) special version (Stakbaks).
Speed:	15 m/s (49.2 ft/s)
Temperature range	e: -70°C to +200°C (-94°F to +390°F)
Clearance:	As per MIL-G-5514F/AS4716
Media:	Practically all fluids, chemicals and gases

Materials

Standard material for Back-up Ring is Turcon[®] T01, Virgin PTFE. Back-up Rings are available in stronger materials in order to cope with specific applications, e.g. high pressure > 35 MPa (5000 psi).

Please contact your Shamban sales engineer for further information.

Series

The BUR follows the series described in MIL-G-5514F/ AS4716. We recommend that the guidelines for static and dynamic sizes be followed to ensure a good service life.

For further information on the Back-up Rings in non-standard diameter sizes, please contact your Shamban sales engineer.

Figure 92 Relationship Between the Profile Cross-Section

Ordering Example

Back-up Ring, solid ring. Series No. BU95 from Table XLI, page 81.

Dash No: 230

Material: T01 (standard)

Note: O-Ring must be ordered separately.

Regarding AS4716 Back-up rings, see page 81

Guidelines for gap, pressure and size

Back-up Rings must be used if the pressure in Tables XXXIX and XL are exceeded.

Figure 93 Extrusion Gap

Table XXXIXExtrusion gap size D for70 Shore Hardness

Series	O-Ring Cross section	Extrusion Gap D mm inch			
	mm	3.5 MPa	7 MPa	10.5 MPa	
	inch	(500 psi)	(1000 psi)	(1500 psi)	
000	1.78	0.15	0.10	0.05	
	0.070	0.006	0.004	0.002	
100	2.62	0.18	0.13	0.08	
	0.103	0.007	0.005	0.003	
200	3.53	0.20	0.15	0.10	
	0.139	0.008	0.006	0.004	
300	5.33	0.25	0.18	0.13	
	0.210	0.010	0.007	0.005	
400	7.00	0.30	0.20	0.15	
	0.276	0.012	0.008	0.006	

Table XLExtrusion gap size D for
80 Shore Hardness

	O-Ring Extrusion Gap D mm Cross inch					
Series	section mm inch	3.5 MPa (500 psi)	7 MPa (1000 psi)	10.5 MPa (1500 psi)	14 MPa (2000 psi)	17.5 MPa (2500 psi)
000	1.78	0.20	0.15	0.10	0.05	0.03
	0.070	0.008	0.006	0.004	0.002	0.001
100	2.62	0.25	0.18	0.13	0.08	0.04
	0.103	0.010	0.007	0.005	0.003	0.002
200	3.53	0.30	0.20	0.15	0.10	0.05
	0.139	0.012	0.008	0.006	0.004	0.002
300	5.33	0.35	0.25	0.18	0.13	0.06
	0.210	0.014	0.010	0.007	0.005	0.002
400	7.00	0.40	0.30	0.20	0.15	0.07
	0.276	0.016	0.012	0.008	0.006	0.003

Table XLI Turcon [®] Back-up Ring Type

Back-up Ring	Groove Type: MIL-G-5514F / AS4716			Comments
Туре	Part No.	Gland Standard	Dia. Size Range Std. dash size	
Cut Back-up Ring	BG91 (MIL-R-8791/1)	MIL-G-5514F/ AS4716 (ID/OD)	004 to 460	Former MS28774, now called MIL-R-8791/1 and for future AMS.
Uncut Back-up Ring	BU95 (MS27595)	MIL-G-5514F/ AS4716 (ID/OD)	004 to 460	The MS27595 will have a future designation as AMS.
Cut Back-up Ring	BG440G (S38544) BG450G (S38545)	AS4716 (ID) AS4716 (OD)	004 to 460	New gland standard AS 4716, designed to fit individual groove dimension. Note ID/OD differences.
Uncut Back-up Ring	BU190G (S38619) BU180G (S38618)	AS4716 (ID) AS4716 (OD)	004 to 460	New gland standard AS 4716, designed to fit individual groove dimension. Note ID/OD differences.
Stakbak [®] (Static Seal, Piston)	BG41 (S37241)	MIL-G-5514F/ AS4716	020 to 460	For greater extrusion resistance and increased gap. For use in 1 b/u gland
Stakbak [®] (Static Seal, Piston)	BG61 (S37261) BG42 (S37242)	MIL-G-5514F/ AS4716	020 to 460	For greater extrusion resistance and increased gap. BG61: For 1 b/u groove width only BG42: For 2 b/u groove width only
Stakbak [®] (Static Seal, Rod)	BG51 (\$37251)	MIL-G-5514F/ AS4716	020 to 460	For greater extrusion resistance and increased gap. For use in 1 b/u gland
Stakbak [®] (Static Seal, Rod)	BG71 (S37271) BG52 (S37252)	MIL-G-5514F AS4716	020 to 460	For greater extrusion resistance and increased gap. BG71: For 1 b/u groove width only BG52: For 2 b/u groove width only

■ Turcon[®] Dual Piston Ring

Description

The Dual Piston Ring Set consists of two Turcon[®] rings each with a step-cut. These rings are activated by a wave shaped stainless steel expander. On the inside of the Turcon[®] rings there is a small notch into which a tab on the spring fits. This prevents the rings from rotating relative to each other. When installed correctly the step-cuts of the two rings will be separated by 180°.

Figure 94 Turcon[®] Dual Piston Ring Set

Method of Operation

With zero or low system pressure, the two piston rings are kept in contact with the bore by the spring force. As the pressure increases it will act on the side and inner diameter of the rings forcing them up against the bore.

The tolerances on the groove width and the width of the rings are very tight which means that the Dual Piston Ring can be made to fit the groove closely. This results in a seal that reacts to pressure changes very quickly, a feature that is used to the full extent in modern fly-by-wire flight controls where minimum hysteresis is important. The narrow seal design provides a low friction in comparison to seals in a MIL-G-5514F/AS4716 groove width. The use of metallic expanders allows for a broader temperature range and improves the chemical resistance of the assembly.

Advantages

- Very low friction
- Wide temperature range
- Narrow groove
- Controlled leakage
- Excellent chemical resistance
- Low hysteresis
- MIL-G-5514F/AS4716 diameters from -112 and up

Technical Data

Operating pres	ssure: 35 MPa (5000 psi) standard design
	For higher pressures, special versions
	are available

Speed:	15.0 m/s (49.2 ft/s)
Temperature range:	: -70°C to +260°C (-94°F to +500°F) Extended temp. capability with special Dual Piston Ring
Clearance:	See Table XLII, page 83
Media:	Practically all fluids, chemicals and gases (See Table IV, page 16)

Note: At high temperature and pressure, speed must be reduced. Consult your Shamban sales engineer.

Materials

See Table I, page 12 and Table III, page 15. Turcon[®] T05 is standard material.

Materials, Spring

The standard spring material PH is 17-7 PH Stainless steel condition CH900. This will also be supplied if the spring code is omitted. Other available materials are:

CC 17-7 PH condition C SS 301 per AMS 5519 full hard

Installation Turcon[®] Dual Piston Ring Set, Series No. PF52 (Old Series No. S32152)

Figure	95	Installation	Drawing
--------	----	--------------	---------

Table	XLII	Groove	Dimensions
-------	------	--------	-------------------

	ø Bore	ø A e Dia.	Groo	ø B ve Dia.	G	R	D Max.		Bor	ø A e Dia.	Groo	ø B ove Dia.	G	R	D Max.
Dash	Inch	mm	Inch	mm	Inch	Inch	Inch	Dash	Inch	mm	Inch	mm	Inch	Inch	Inch
NO	+0.002 -0.000	+0.05 -0.00	±0.004	±0.10	/ mm	/ mm	/ mm		+0.002 -0.000	+0.05 -0.00	±0.004	±0.10	/ mm	/ mm	/ mm
112 113 114	0.675 0.738 0.800	17.15 18.75 20.32	0.429 0.428 0.490	10.90 10.87 12.45				341 342 343	3.868 3.993 4.118	98.25 101.42 104.60	3.434 3.559 3.558	87.22 90.40 90.37	.125	.010	.006 0.15
115 116	0.863 0.925	21.92 23.50	0.553 0.615	14.05 15.62				344	4.243	107.77	3.683	93.55	.127	.020	.007
210 211 212 213 214	0.991 1.053 1.116 1.178 1.241	25.17 26.75 28.35 29.92 31.52	0.681 0.743 0.806 0.868 0.931	17.30 18.87 20.47 22.05 23.65				345 346 347 348 349	4.368 4.493 4.618 4.743 4.868	110.95 114.12 117.30 120.47 123.65	3.808 3.933 4.058 4.183 4.308	96.72 99.90 103.07 106.25 109.42	3.18 3.23	0.25 0.50	0.18
215	1.303	33.10	0.993	25.22					+0.003 -0.000	+0.076 -0.000	±0.004	±0.10			
216 217 218 219	1.366 1.428 1.491 1.553	34.70 36.27 37.87 39.45	1.056 0.994 1.057 1.119	26.82 25.25 26.85 28.42	.125	.010	.005	425 426 427 428	4.974 5.099 5.224 5.349	126.34 129.51 132.69 135.86	4.414 4.539 4.664 4.789	112.12 115.29 118.47 121.64			
220 221 222	1.616 1.678 1.741	41.05 42.62 44.22	1.182 1.244 1.307	30.02 31.60 33.20	.127	.020	0.13	429 430 431	5.474 5.599	139.04 142.21	4.914 5.039	124.82 127.99			
325 326 327 328	1.867 1.992 2.118 2.243	47.42 50.60 53.80 56.97	1.433 1.558 1.684 1.809	36.40 39.57 42.77 45.95	3.18 3.23	0.25 0.50		432 433 434	5.849 5.974 6.099	148.56 151.74 154.91	5.289 5.414 5.539	134.34 137.52 140.69	.188 .190	.010 .020	
329 330	2.368 2.493	60.15 63.32	1.934 2.059	49.12 52.30				435 436 437	6.224 6.349 6.474	158.09 161.26 164.44	5.664 5.789 5.914	143.87 147.04 150.22	4.78	0.25	.008 0.20
331 332 333 334	2.018 2.743 2.868 2.993	66.50 69.67 72.85 76.02	2.184 2.309 2.434 2.559	55.47 58.65 61.82 65.00				438 439	6.724 6.974	170.79 177.14	6.164 6.414	156.57 162.92	4.83	0.50	
335 336 337 338	3.118 3.243 3.368 3.493	79.20 82.37 85.55 88 72	2.684 2.809 2.934 3.059	68.17 71.35 74.52 77 70			.006	441 442 443 444	7.474 7.724 7.974 8.224	189.84 196.19 202.54 208.89	6.914 7.164 7.414 7.664	175.62 181.67 188.32 194.67			
339 340	3.618 3.743	91.90 95.07	3.184 3.309	80.87 84.05			0.15	445 446 447	8.474 8.974 9.474	215.24 227.94 240.64	7.914 8.414 8.914	201.02 213.72 226.42			

Figure 96 Relationship Between the Profile Cross-Section

Application Example

strength. This option can be ordered by inserting a "K" in the 5th character of the part number.

Figure 97 Rudder Actuator (Fly-By-Wire), Airbus A320

Turcon[®] Glyd Ring[®] for use with MIL-G-5514F/AS4716 Rod/Bore

Description

The Turcon[®] Glyd $Ring^{®}$ is a simple and reliable seal consisting of a Turcon[®] seal cap activated by an O-Ring.

Method of Operation

A true slipper seal, the Glyd Ring[®] relies on the O-Ring energization to provide the sealing force at zero or low pressure. As the pressure increases the Glyd Ring[®] is energized by the hydraulic pressure and is force against the sealing surface.

The Glyd Ring[®] is made with a slight interference fit which ensures initial contact with the mating surface.

The geometry of the Glyd Ring[®] allows the formation of a lubricating hydro-dynamic oil film under the seal in reciprocating applications.

All piston versions of the Glyd Ring[®] are supplied with notches to prevent blow-by (see also Plus Seal[®]II, page 50). In the case of rod versions, notches are an option and must be specified in the part number. See page 86 "Option Notches".

Advantages

- Low friction
- Low cost
- Narrow groove
- Design flexibility adaptable for almost all groove sizes
- Long service life
- High operational reliability
- Stick-slip free operation
- Easy installation
- Available for all diameters

Technical Data

Operating pressure:	35 MPa (5000 psi)
Speed:	up to 15 m/s (49.2 ft/s) with reciprocating movements
Temperature	
range:	-54°C to +200°C (-65°F to +390°F) (depending on elastomer material)
Clearance:	As indicated on the enclosed data sheets
Media:	Mineral oil-based hydraulic fluids, flame retardant hydraulic fluids, environmentally safe hydraulic fluids (bio-oils), Phosphate ester, water and others, depending on the elastomer material (see Table IV, page 16)

Materials

See Table I, page 12 and Table III, page 15.

Series

The Glyd Ring[®] is designed to mate with standard MIL-G-5514F/AS4716 rod or bore sizes, however the groove dimensions are a Shamban design standard.

Figure 99 Relationship Between the Profile Cross-Section Series No. PG28 and RG27

Ordering Example

Turcon[®] Glyd Ring[®] Series No. PG28 with notch Dash No: 214

Material: T05 (standard), see Table I, page 12.

Note: O-Rings are ordered separately. Sizes can be found in Table XLIII, page 87 and Table XLIV, page 89.

Option Notches: Piston seals are always delivered as standard with notch. To omit notch, change 5th character to "W". Ex. PG28**W**.

Rod seals are always delivered as standard without notch. To include notch, change 5th character to "N". Ex. RG27**N**

Application Example

Figure 100 Typical Spool Valve

The Glyd $\operatorname{Ring}^{\$}$ offers space savings and easy assembly in spool values.

Edition April 2004

Installation Turcon $^{\ensuremath{\mathbb{B}}}$ Glyd Ring $^{\ensuremath{\mathbb{B}}}$ Bore, Series No. PG28 (Old Series No. S32928)

Figure	101	Installation	Drawing
--------	-----	--------------	---------

Table XLIII Groove Dimensions

	Bore	Bore Dia.		ø B ve Dia.	G	R	D	O- Ring	
Dash No	Inch	mm	Inch	mm	Inch	Inch	Inch	Dash No	
	+0.001 -0.000	+0.025 -0.000	+0.000 -0.001	+0.000 -0.025	/ mm	/ mm	/ mm	AS 568A	
007 008 009	0.266 0.297 0.329	6.76 7.54 8.36	0.124 0.155 0.187	3.15 3.94 4.75			.004	006 007 008	•
010 011 012	0.360 0.422 0.485	9.14 10.72 12.32	0.218 0.248 0.311	5.54 6.30 7.90			0.10	009 010 011	•
	+0.002 -0.000	+0.05 -0.00	+0.000 -0.002	+0.00 -0.05					
013 014	0.550 0.613	13.97 15.57	0.376 0.439	9.55 11.15	.081			012 013	
015 016 017 018 019	0.675 0.738 0.800 0.863 0.925	17.15 18.75 20.32 21.92 23.50	0.501 0.564 0.626 0.689 0.751	12.73 14.33 15.90 17.50 19.08	.086 2.06 2.19	.005 .015	.005	014 015 016 017 018	•
020 021 022 023 024	0.991 1.053 1.116 1.178 1.241	25.17 26.75 28.35 29.92 31.52	0.817 0.879 0.942 1.004 1.067	20.75 22.33 23.93 25.50 27.10		0.38	0.15	019 020 021 022 023	•
025 026 027 028	1.303 1.366 1.428 1.491	33.10 34.70 36.27 37.87	1.129 1.192 1.254 1.317	28.68 30.28 31.85 33.45				024 025 026 027	•
110 111 112 113 114	0.550 0.613 0.675 0.738 0.800	13.97 15.57 17.15 18.75 20.32	0.300 0.363 0.425 0.488 0.550	7.62 9.22 10.80 12.40 13.97	↓			109 110 111 112 113	•

reh	ø A Bore Dia.		ø B Groove Dia.		G	R	D	O- Ring Dash
No	Inch +0.002	mm +0.05	Inch +0.000	mm +0.00	Inch / mm	Inch / mm	Inch / mm	No AS
115 116 117 118 119	0.863 0.925 0.991 1.053 1.116	-0.00 21.92 23.50 25.17 26.75 28.35	-0.002 0.613 0.675 0.741 0.803 0.866	-0.05 15.57 17.15 18.82 20.40 22.00				114 115 116 117 118
120 121 122 123 124	1.178 1.241 1.303 1.366 1.428	29.92 31.52 33.10 34.70 36.27	0.928 0.991 1.053 1.116 1.178	23.57 25.17 26.75 28.35 29.92				119 120 121 122 123
125 126 127 128 129	1.491 1.553 1.616 1.678 1.741	37.87 39.45 41.05 42.62 44.22	1.241 1.303 1.366 1.428 1.491	31.52 33.10 34.70 36.27 37.87	.126 .131	.005 .015	.005	124 125 126 127 128
130 131 132 133 134	1.805 1.867 1.930 1.992 2.055	45.85 47.42 49.02 50.60 52.20	1.555 1.617 1.680 1.742 1.805	39.50 41.07 42.67 44.45 45.85	3.20 3.33	0.13 0.38	0.13	129 130 131 132 133
135 136 137 138 139	2.118 2.180 2.243 2.305 2.368	53.80 55.37 56.97 58.55 60.15	1.868 1.930 1.993 2.055 2.118	47.45 49.02 50.62 52.20 53.80				134 135 136 137 138
140 141 142 143 144	2.430 2.493 2.555 2.618 2.680	61.72 63.32 64.90 66.50 68.07	2.180 2.243 2.305 2.368 2.430	55.37 56.97 58.55 60.15 61.72				139 140 141 142 143

Turcon[®] Glyd Ring[®]

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		ہ Bore	ø A ø B Bore Dia. Groove [ø B Groove Dia.		R	D	O- Ring
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Dash No	Inch	mm	Inch	mm	Inch	Inch	Inch	Dash No
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		+0.002 -0.000	+0.05 -0.00	+0.000 -0.002	+0.00 -0.05	/ mm	/ mm	/ mm	AS 568A
210 0.991 25.17 0.617 15.67 1.57 208 211 1.16 28.35 0.742 18.85 209 210 213 1.178 29.92 0.867 22.02 23.60 211 211 214 1.241 31.52 0.867 22.02 23.60 21.7 21.3 215 1.303 33.10 0.992 25.60 25.20 21.7 21.428 36.27 1.054 26.77 21.616 21.7 21.53 39.45 1.177 29.95 21.617 21.616 21.7 21.57 21.617 21.347 31.55 21.617 21.617 21.7 22.1 21.57 21.367 34.72 22.0 22.2 21.741 44.22 1.367 34.72 22.0 22.2 22.2 2.741 44.22 1.367 34.72 22.0 22.2 22.2 22.2 2.743 56.97 1.869 47.47 1.433 1.2 22.0 22.6 22.6 22.6 22.6 22.6 22.6 22.6 22.6 22.6 22.6<	145 146 147 148 149	2.743 2.805 2.868 2.930 2.993	69.67 71.25 72.85 74.42 76.02	2.493 2.555 2.618 2.680 2.743	63.32 64.90 66.50 68.07 69.67	ſ	ſ	î	144 145 146 147 148
215 1.303 33.10 0.929 23.60 1	210 211 212 213 214	0.991 1.053 1.116 1.178 1.241	25.17 26.75 28.35 29.92 31.52	0.617 0.679 0.742 0.804 0.867	15.67 17.25 18.85 20.42 22.02				208 209 210 211 212
220 1.616 41.05 1.242 31.55 34.72 34.72 34.72 223 1.867 47.42 1.493 37.92 34.72 223 224 1.992 50.60 1.618 41.10 166 0.10 222 223 225 2.118 53.80 1.744 44.30 1.66 0.10 222 223 226 2.243 56.97 1.869 47.47 53.82 1.71 0.25 0.06 226 227 2.368 60.50 2.244 53.82 1.71 0.25 0.06 226 230 2.743 69.67 2.369 60.17 4.22 0.25 0.15 229 231 2.868 72.85 2.494 63.35 4.35 0.64 231 232 2.993 76.02 2.619 66.52 4.35 0.64 234 236 3.493 88.72 3.119 79.22 3.618 91.90 3.349 85.75 2.44 2.36 237 236 <td< td=""><td>215 216 217 218 219</td><td>1.303 1.366 1.428 1.491 1.553</td><td>33.10 34.70 36.27 37.87 39.45</td><td>0.929 0.992 1.054 1.117 1.179</td><td>23.60 25.20 26.77 28.37 29.95</td><td></td><td></td><td></td><td>213 214 215 216 217</td></td<>	215 216 217 218 219	1.303 1.366 1.428 1.491 1.553	33.10 34.70 36.27 37.87 39.45	0.929 0.992 1.054 1.117 1.179	23.60 25.20 26.77 28.37 29.95				213 214 215 216 217
225 2.118 53.80 1.744 44.30 .166 .010 224 225 227 2.368 60.15 1.994 50.65 .171 .025 .006 226 229 2.618 66.50 2.244 53.82 .171 .025 .006 226 230 2.743 69.67 2.369 60.17 4.22 0.25 0.15 229 231 2.868 72.85 2.494 63.35 4.35 0.64 230 232 2.993 76.02 2.619 66.50 2.244 69.70 231 233 3.118 79.20 2.744 69.70 235 3.368 85.55 2.994 76.05 236 237 236 3.493 88.72 3.119 79.22 237 236 236 237 236 8.493 88.75 3.494 88.75 237 238 237 238 237 238 237 238 237 238 237 238 237 238 237 238 237 238 <td< td=""><td>220 221 222 223 224</td><td>1.616 1.678 1.741 1.867 1.992</td><td>41.05 42.62 44.22 47.42 50.60</td><td>1.242 1.304 1.367 1.493 1.618</td><td>31.55 33.12 34.72 37.92 41.10</td><td></td><td></td><td></td><td>218 219 220 222 223</td></td<>	220 221 222 223 224	1.616 1.678 1.741 1.867 1.992	41.05 42.62 44.22 47.42 50.60	1.242 1.304 1.367 1.493 1.618	31.55 33.12 34.72 37.92 41.10				218 219 220 222 223
230 2.743 69.67 2.369 60.17 4.22 0.25 0.15 229 231 2.868 72.85 2.494 63.35 4.35 0.64 231 232 233 3.118 79.20 2.744 69.70 4.35 0.64 232 233 235 3.368 85.55 2.994 76.05 5.7 236 236 237 236 3.493 88.72 3.119 79.22 2.744 82.40 236 233 236 3.493 88.72 3.119 79.22 2.44 82.40 236 237 237 3.618 91.90 3.244 82.40 237 238 237 238 240 3.993 101.42 3.619 91.92 4.14 242 241 241 241 242 242 242 243 241 242 242 242 242 243 241 242 242 243 242 244 242 243 242 243 241 242 <	225 226 227 228 229	2.118 2.243 2.368 2.493 2.618	53.80 56.97 60.15 63.32 66.50	1.744 1.869 1.994 2.119 2.244	44.30 47.47 50.65 53.82 53.82	.166 .171	.010 .025	.006	224 225 226 227 228
235 3.368 85.55 2.994 76.05 235 237 3.618 91.90 3.244 82.40 236 236 237 3.618 91.90 3.244 82.40 235 236 237 238 3.743 95.07 3.369 85.57 238 237 238 237 238 237 238 237 238 237 238 237 238 237 238 237 238 237 238 237 238 237 238 237 238 237 238 238 237 238 238 237 238 238 238 237 238 239 240 244 242 241 242 241 242 244 244 245 244 245 244 245 246 246 246 252 <td>230 231 232 233 234</td> <td>2.743 2.868 2.993 3.118 3.243</td> <td>69.67 72.85 76.02 79.20 82.37</td> <td>2.369 2.494 2.619 2.744 2.869</td> <td>60.17 63.35 66.52 69.70 72.87</td> <td>4.22 4.35</td> <td>0.25 0.64</td> <td>0.15</td> <td>229 230 231 232 233</td>	230 231 232 233 234	2.743 2.868 2.993 3.118 3.243	69.67 72.85 76.02 79.20 82.37	2.369 2.494 2.619 2.744 2.869	60.17 63.35 66.52 69.70 72.87	4.22 4.35	0.25 0.64	0.15	229 230 231 232 233
240 3.993 101.42 3.619 91.92 241 241 242 4.243 107.77 3.869 98.27 242 242 4.243 107.77 3.869 98.27 242 242 242 242 243 10.452 101.45 242 242 243 243 243 244 242 244 242 244 242 243 244 4.493 114.12 4.119 104.62 10 10 10 243 244 243 245 4.618 117.30 4.244 107.80 10.97 114.15 10 10 246 244 325 1.867 47.42 1.313 33.35 1.54 39.73 247 .020 246 324 326 1.992 50.60 1.438 36.53 247 .020 .247 .020 324 324 325 324 324 325 325 326 .007 328 326 327 .007 328 329 327 .007 328 329 <t< td=""><td>235 236 237 238 239</td><td>3.368 3.493 3.618 3.743 3.868</td><td>85.55 88.72 91.90 95.07 98.25</td><td>2.994 3.119 3.244 3.369 3.494</td><td>76.05 79.22 82.40 85.57 88.75</td><td></td><td></td><td></td><td>234 235 236 237 238</td></t<>	235 236 237 238 239	3.368 3.493 3.618 3.743 3.868	85.55 88.72 91.90 95.07 98.25	2.994 3.119 3.244 3.369 3.494	76.05 79.22 82.40 85.57 88.75				234 235 236 237 238
245 4.618 117.30 4.244 107.80 244 245 246 4.743 120.47 4.369 110.97 245 325 1.867 47.42 1.313 33.35 243 326 1.992 50.60 1.438 36.53	240 241 242 243 244	3.993 4.118 4.243 4.368 4.493	101.42 104.60 107.77 110.95 114.12	3.619 3.744 3.869 3.994 4.119	91.92 95.10 98.27 101.45 104.62				239 240 241 242 243
325 1.867 47.42 1.313 33.35 323 326 1.992 50.60 1.438 36.53 324 327 2.118 53.80 1.564 39.73 325 328 2.243 56.97 1.689 42.90 .247 .020 326 329 2.368 60.15 1.814 46.08 327 330 2.493 63.32 1.939 49.25 .035 .007 328 331 2.618 66.50 2.064 52.43 .252 .035 .007 332 2.743 69.67 2.189 55.60 6.27 0.50 0.18 330 333 2.868 72.85 2.314 58.78 331 332 334 2.993 76.02 2.439 61.95 6.40 0.73 333 335 3.118 79.20 2.564 65.13 333 334 334	245 246 247	4.618 4.743 4.868	117.30 120.47 123.65	4.244 4.369 4.494	107.80 110.97 114.15				244 245 246
330 2.493 63.32 1.939 49.25 1.552 1.055 328 331 2.618 66.50 2.064 52.43 329 329 332 2.743 69.67 2.189 55.60 6.27 0.50 0.18 330 333 2.868 72.85 2.314 58.78 331 334 2.993 76.02 2.439 61.95 6.40 0.73 332 335 3.118 79.20 2.564 65.13 68.30 333	325 326 327 328 329	1.867 1.992 2.118 2.243 2.368	47.42 50.60 53.80 56.97 60.15	1.313 1.438 1.564 1.689 1.814	33.35 36.53 39.73 42.90 46.08	.247	.020 035	007	323 324 325 326 327
335 3.118 79.20 2.564 65.13 333 336 3.243 82.37 2.689 68.30 334	330 331 332 333 334	2.493 2.618 2.743 2.868 2.993	63.32 66.50 69.67 72.85 76.02	1.939 2.064 2.189 2.314 2.439	49.25 52.43 55.60 58.78 61.95	6.27 6.40	0.50 0.73	0.18	328 329 330 331 332
	335 336	3.118 3.243	79.20 82.37	2.564 2.689	65.13 68.30				333 334

	a Bore	ø A e Dia.	ø B Groove Dia.		G	R	D	O- Ring
Dash No	Inch	mm	Inch	mm	Inch	Inch	Inch	Dasĥ No
	+0.002 -0.000	+0.05 -0.00	+0.000 -0.002	+0.00 -0.05	/ mm	/ mm	/ mm	AS 568A
337 338 339	3.368 3.493 3.618	85.55 88.72 91.90	2.814 2.939 3.064	71.48 74.65 77.83				335 336 337
340 341 342 343 344	3.743 3.868 3.993 4.118 4.243	95.07 98.25 101.42 104.60 107.77	3.189 3.314 3.439 3.564 3.689	81.00 84.18 87.35 90.53 93.70	.247 .252	.020 .035	.007	338 339 340 341 342
345 346 347 348 349	4.368 4.493 4.618 4.743 4.868	110.95 114.12 117.30 120.47 123.65	3.814 3.939 4.064 4.189 4.314	96.88 100.05 103.23 106.40 109.58	6.27 6.40	0.50 0.73	0.18	343 344 345 346 347
	+0.003 -0.000	+0.076 -0.000	+0.000 -0.003	+0.000 -0.076				
350 351 352	4.974 5.099 5.224	126.34 129.51 132.69	4.420 4.545 4.670	112.27 115.44 118.62				348 349 350
428 429	5.349 5.474	135.86 139.04	4.599 4.724	116.81 119.99				425 426
430 431 432 433 434	5.599 5.724 5.849 5.974 6.099	142.21 145.39 148.56 151.74 154.91	4.849 4.974 5.099 5.224 5.349	123.16 126.34 129.51 132.69 135.86				427 428 429 430 431
435 436 437 438 439	6.224 6.349 6.474 6.724 6.974	158.09 161.26 164.44 170.79 177.14	5.474 5.599 5.724 5.974 6.224	139.04 142.21 145.39 151.74 158.09				432 433 434 436 437
440 441 442 443 444	7.224 7.474 7.724 7.974 8.224	183.49 189.84 196.19 202.54 208.89	6.474 6.724 6.974 7.224 7.474	164.44 170.79 177.14 183.49 189.84	.320 .325	.020 .035	.010	438 439 440 441 443
445 446	8.474 8.974	215.24 227.94	7.724 8.224	196.19 208.89	8.13	0.50	0.25	443 445
	+0.004 -0.000	+0.10 -0.00	+0.000 -0.003	+0.000 -0.076	8.26	0.73		
447 448 449	9.474 9.974 10.474	240.64 253.34 266.04	8.724 9.224 9.724	221.59 234.29 246.99				446 447 448
450 451 452 453 454	10.974 11.474 11.974 12.474 12.974	278.74 291.44 304.14 316.84 329.54	10.224 10.724 11.224 11.724 12.224	259.69 272.39 285.09 297.79 310.49				449 450 451 452 453
455 456 457 458 459 460	13.474 13.974 14.474 14.974 15.474 15.974	342.24 354.94 367.64 380.34 393.04 405.74	12.724 13.224 13.724 14.224 14.724 15.224	323.19 335.89 348.59 361.29 373.99 386.69				454 455 456 457 458 459

Installation Turcon[®] Glyd Ring[®] Rod, Series No. RG27 (Old Series No. S32927)

Figure	102	Installation	Drawing
--------	-----	--------------	---------

	ø B Rod Dia.		ø A Groove Dia.		G	R	D	O- Ring
Dash No	Inch	mm	Inch	mm	Inch	Inch	Inch	Dash No
	+0.000 -0.001	+0.000 -0.025	+0.001 -0.000	+0.025 -0.000	/ mm	/ mm	/ mm	AS 568A
006 007 008 009	0.123 0.154 0.185 0.217	3.12 3.91 4.70 5.51	0.259 0.290 0.321 0.353	6.58 7.37 8.15 8.97			.004	007 008 009 010
010 011 012	0.248 0.310 0.373	6.30 7.87 9.47	0.422 0.484 0.547	10.72 12.29 13.89			0.10	011 012 013
	+0.000 -0.002	+0.00 -0.05	+0.002 -0.000	+0.05 -0.00				
013 014	0.435 0.498	11.05 12.65	0.609 0.672	15.47 17.07	.081	.005		014 015
015 016 017 018 019	0.560 0.623 0.685 0.748 0.810	14.22 15.82 17.40 19.00 20.57	0.734 0.797 0.859 0.922 0.984	18.64 20.24 21.82 23.42 24.99	2.06 2.19	0.13 0.38		016 017 018 019 020
020 021 022 023 024	0.873 0.935 0.998 1.060 1.123	22.17 23.75 25.35 26.92 28.52	1.047 1.109 1.172 1.234 1.297	26.59 28.17 29.77 31.34 32.94			.005 0.13	021 022 023 024 025
025 026 027 028	1.185 1.248 1.310 1.373	30.10 31.70 33.27 34.87	1.359 1.422 1.484 1.547	34.52 36.12 37.69 39.29				026 027 028 028
110 111 112 113	0.373 0.435 0.498 0.560	9.47 11.05 12.65 14.22	0.623 0.685 0.748 0.810	15.82 17.40 19.00 20.57	Ŷ			111 112 113 114

Table	XLIV	Groove	Dimensions

	Roc	ø B I Dia.	ہ Groo	ø A we Dia.	G	R	D	O- Ring
Dash No	Inch	mm	Inch	mm	Inch	Inch	Inch	Dash No
	+0.000 -0.002	+0.00 -0.05	+0.002 -0.000	+0.05 -0.00	/ mm	/ mm	/ mm	AS 568A
114	0.623	15.82	0.873	22.17				115
115 116 117 118 119	0.685 0.748 0.810 0.873 0.935	17.40 19.00 20.57 22.17 23.75	0.935 0.998 1.060 1.123 1.185	23.75 25.35 26.92 28.52 30.10				116 117 118 119 120
120 121 122 123 124	0.998 1.060 1.123 1.185 1.248	25.35 26.92 28.52 30.10 31.70	1.248 1.310 1.373 1.435 1.498	31.70 33.27 34.87 36.45 38.05				121 122 123 124 125
125 126 127 128 129	1.310 1.373 1.435 1.498 1.560	33.27 34.87 36.45 38.05 39.62	1.560 1.623 1.685 1.748 1.810	39.62 41.22 42.80 44.40 45.97	.126 .131 3.20	.005 .015 0.13	.005 0.13	126 127 128 129 130
130 131 132 133 134	1.623 1.685 1.748 1.810 1.873	41.22 42.80 44.40 45.97 47.57	1.873 1.935 1.998 2.060 2.123	47.57 49.15 50.75 52.32 53.92	 3.33	0.38		131 132 133 134 135
135 136 137 138 139	1.930 1.998 2.061 2.123 2.186	49.17 50.75 52.35 53.92 55.52	2.186 2.248 2.311 2.373 2.436	55.52 57.10 58.70 60.27 61.87				136 137 138 139 140
140 141 142	2.248 2.311 2.373	57.10 58.70 60.27	2.498 2.561 2.623	63.45 65.05 66.62				141 142 143

	Roc	ø B I Dia.	ہ Groo	ø A ve Dia.	G	R	D	O- Ring
Dash No	Inch	mm	Inch	mm	Inch	Inch	Inch	Dash No
	+0.000 -0.002	+0.00 -0.05	+0.002 -0.000	+0.05 -0.00	/ mm	/ mm	/ mm	AS 568A
143 144	2.436 2.498	61.87 63.45	2.686 2.748	68.22 69.80				144 145
145 146 147 148 149	2.561 2.623 2.686 2.748 2.811	65.05 66.62 68.22 69.80 71.40	2.811 2.873 2.936 2.998 3.061	71.40 72.97 74.57 76.15 77.75	Ţ	ſ	Ť	146 147 148 149 150
210 211 212 213 214	0.748 0.810 0.873 0.935 0.998	19.00 20.57 22.17 23.75 25.35	1.122 1.184 1.247 1.309 1.372	28.50 30.07 31.67 33.25 34.85				212 213 214 215 216
215 216 217 218 219	1.060 1.123 1.185 1.248 1.310	26.92 28.52 30.10 31.70 33.27	1.434 1.497 1.559 1.622 1.684	36.42 38.02 39.60 41.20 42.77				217 218 219 220 221
220 221 222 223 224	1.373 1.435 1.498 1.623 1.748	34.87 36.45 38.05 41.22 44.40	1.747 1.809 1.872 1.997 2.122	44.37 45.95 47.55 50.72 53.90				222 222 223 224 225
225 226 227 228 229	1.873 1.998 2.123 2.248 2.373	47.57 50.75 53.92 57.10 60.27	2.247 2.372 2.497 2.622 2.747	57.07 60.25 63.42 66.60 69.77	.166 .171	.010 .025	.006	226 227 228 229 230
230 231 232 233 234	2.498 2.623 2.748 2.873 2.997	63.45 66.62 69.80 72.97 76.12	2.872 2.997 3.122 3.247 3.371	72.95 76.12 79.30 82.47 85.62	4.22 4.35	0.25 0.64	0.15	231 232 233 234 235
235 236 237 238 239	3.122 3.247 3.372 3.497 3.622	79.30 82.47 85.65 88.82 92.00	3.496 3.621 3.746 3.871 3.996	88.80 91.97 95.15 98.32 101.50				236 237 238 239 240
240 241 242 243 244	3.747 3.872 3.997 4.122 4.247	95.17 98.35 101.52 104.70 107.87	4.121 4.246 4.371 4.496 4.621	104.67 107.85 111.02 114.20 117.37				241 242 243 244 245
245 246 247	4.372 4.497 4.622	111.05 114.22 117.40	4.746 4.871 4.996	120.55 123.72 126.90				246 247 248
325 326 327 328 329	1.498 1.623 1.748 1.873 1.998	38.05 41.22 44.40 47.57 50.75	2.052 2.177 2.302 2.427 2.552	51.12 55.30 58.47 61.65 64.82	.247 .252	.020 .035	.007	326 327 328 329 330
330 331 332 333 334	2.123 2.248 2.373 2.498 2.623	53.92 57.10 60.27 63.45 66.62	2.677 2.802 2.927 3.052 3.177	68.00 71.17 74.35 77.52 80.70	6.27 6.40	0.50 0.73	0.18	331 332 333 334 335

	Roc	ø B I Dia.	Groo	ø A ove Dia.	G	R	D	O- Ring
Dash No	Inch	mm	Inch	mm	Inch	Inch	Inch	Dash No
	+0.000	+0.00	+0.002	+0.05	/ mm	/ mm	/ mm	AS 568A
335 336 337 338 339	2.748 2.873 2.997 3.122 3.247	69.80 72.97 76.12 79.30 82.47	3.302 3.427 3.551 3.676 3.801	83.87 87.05 90.20 93.37 96.55	.247			336 337 338 339 340
340 341 342 343 344	3.372 3.497 3.622 3.747 3.872	85.65 88.82 92.00 95.17 98.35	3.926 4.051 4.176 4.301 4.426	99.72 102.90 106.07 109.25 112.42	.252 6.27		.007 0.18	341 342 343 344 345
345 346 347 348 349	3.997 4.122 4.247 4.372 4.497	101.52 104.70 107.87 111.05 114.22	4.551 4.676 4.801 4.926 5.051	115.60 118.77 121.95 125.12 128.30	6.40			346 347 348 349 350
	+0.000 -0.003	+0.000 -0.076	+0.003 -0.000	+0.076 -0.000				
425 426 427 428 429	4.497 4.622 4.747 4.872 4.997	114.22 117.40 120.57 123.75 126.92	5.247 5.372 5.497 5.622 5.747	133.27 136.45 139.62 142.80 145.97				427 428 429 430 431
430 431 432 433 434	5.122 5.247 5.372 5.497 5.622	130.10 133.27 136.45 139.62 142.80	5.872 5.997 6.122 6.247 6.372	149.15 152.32 155.50 158.67 161.85	.320	.020	010	432 433 434 435 436
435 436 437 438 439	5.747 5.872 5.997 6.247 6.497	145.97 149.15 152.32 158.67 165.02	6.497 6.622 6.747 6.997 7.247	165.02 168.20 171.37 177.72 184.07	8.13 8.26	0.50 0.73	0.25	437 437 438 439 440
440 441 442 443 444	6.747 6.997 7.247 7.497 7.747	171.37 177.72 184.07 190.42 196.77	7.497 7.747 7.997 8.247 8.497	190.42 196.77 203.12 209.47 215.82				441 442 443 444 445
445 446	7.997 8.497	203.12 215.82	8.747 9.247	222.17 234.87				445 446
	+0.000 -0.003	+0.000 -0.076	+0.004 -0.000	+0.100 -0.000				
447 448 449	8.997 9.497 9.997	228.52 241.22 253.92	9.747 10.247 10.747	247.57 260.27 272.97				447 448 449
450 451 452 453 454	10.497 10.997 11.497 11.997 12.497	266.62 279.32 292.02 304.72 317.42	11.247 11.747 12.247 12.747 13.247	285.67 298.37 311.07 323.77 336.47				450 451 452 453 454
455 456 457 458 459 460	12.997 13.497 13.997 14.497 14.997 15.497	330.12 342.82 355.52 368.22 380.92 393.62	13.747 14.247 14.747 15.247 15.747 16.247	349.17 361.87 374.57 387.27 399.97 412.67				455 456 457 458 459 460

Turcon[®] Stepseal[®]K* For use with MIL-Standard Rod/Bore

Description

The sealing of piston rods places the highest demands on operational safety and environmental protection in hydraulic engineering.

Rod sealing systems must exhibit no dynamic leakage to the atmosphere under all operating conditions and must be completely leak tight when the machine is in a static condition.

Furthermore, they should achieve a high degree of mechanical efficiency through low friction and be easy to install in small grooves. Costs and service life must meet the high expectations of the operator.

The piston rod seal, Turcon[®] Stepseal[®]K, developed by Shamban comes closest to satisfying these ideal demands. Already in use for several decades, this seal is still a technically outstanding seal element due to the continuous innovative development of the design and of the Turcon[®] materials.

With the introduction of the Stepseal[®]K it became possible to arrange several seals one behind the other, thus allowing tandem seal configurations to be created without any build-up of intermediate pressure.

The single-acting seal element is made of high-grade Turcon[®] materials with outstanding sliding and wear resistance properties. It is installed in grooves to Shamban standards using an O-Ring as the energizing element.

Figure 103 Turcon[®] Stepseal[®]K

Method of Operation

The sealing mechanism of the Stepseal[®]K (Figure 103) is based on the hydrodynamic properties of the seal. The specially formed seal edge has a steep contact pressure gradient on the high pressure side and a shallow contact pressure gradient on the low pressure side. This ensures that the fluid film adhering to the piston rod is returned to the high pressure chamber on the return stroke of the rod. This prevents the micro-fluid layer, that is carried out of the high pressure chamber when the piston rod is extended, from causing leaks.

This return delivery property prevents the build-up of interstage pressure normally associated with tandem seal configurations (Figure 104). Interstage pressure depends on the system pressure speed, the stroke length and the groove design.

Figure 104 Pressure Distribution in Tandem Installation

* Patent-No. P 32 25 906

Design Instructions

In many applications, tandem unvented sealing systems are required. Figure 105 shows such a tandem configuration utilizing the Stepseal[®]K. The use of tandem Stepseal[®] increases functional reliability.

Figure 105 Turcon[®] Stepseal[®]K in Tandem Configuration

In this configuration it must be noted that a sufficiently large space is designed between the seals to take the hydraulic fluid, as shown in Figure 123, page 104.

Depending on the application and the operating conditions, the combination of different materials offers an improvement in the sealing efficiency and the service life of the system, e.g. in hydraulic cylinders subject to high loads and under rough operating conditions.

Stepseal[®] K elements should always be used in combination with a double acting scraper to provide an optimum sealing effect. The Excluder[®] DC is well suited for such applications. For further details, please see Excluder[®] and Scraper section on page 104.

Advantages

- High static and dynamic sealing effect
- Low friction, and high efficiency
- Stick-slip free operation
- High abrasion resistance, high operational reliability
- Simple groove design
- Wide range of application temperatures and high resistance to chemicals, depending on the choice of elastomer material
- Available for all diameters up to 3000 mm (10 ft.)

Technical Data

Operating pressure:	up to 35 MPa (5000 psi)
Speed:	up to 15 m/s (49.2 ft/s) with reciprocating movements, frequency up to 5 Hz
Temperature:	-54°C to +200°C (-65°F to +390°F) (depending on elastomer material)
Media:	Mineral oil-based hydraulic fluids, flame retardant hydraulic fluids, environmentally safe hydraulic fluids (bio-oils), water and others, depending on the elastomer material (see Table IV, page 16)
Gap width:	The maximum permissible radial gap $D/2_{max}$ is shown in Table XLV and XLVI, pages 94 - 97, as a function of the operating pressure and functional diameter.

Materials

See Table I, page 12.

Series

The Stepseal[®]K is available in most MIL-G-5514F/ AS4716 bore or rod dimensions, and also for a number of non-MIL spec. grooves. Please consult your Shamban sales engineer for non-standard sizes.

Figure 106 Relationship Between the Profile Cross-Sections

Ordering Example

Turcon[®] Stepseal[®]K, Rod Seal, Series No. RSA7

Dash No: 214

Material: T05 see Table I, Page 12

Note: O-Rings must be ordered separately. Sizes can be found in Table XLV and Table XLVI, pages 94 - 97.

Figure 107 EH 101 Rotor Control Turcon[®] Hatseal[®]II and Turcon[®] Stepseal[®]K

Problem

Limited life resulting from pressure impulsing.

Solution

A sealing system combining the Stepseal[®]K and Hatseal[®]II has optimized seal life.

6

Installation Turcon[®] Stepseal[®]K Bore, Series No. PSA8 (Old Series No. S34768)

Figure	108	Installation	Drawing
--------	-----	--------------	---------

Table XLV Groove Dimensions								
	ہ Bore	ø A e Dia.	ہ Groo	ø B ve Dia.	G	R	D	O- Ring
Dash No	Inch	mm	Inch	mm	Inch	Inch	Inch	Dash No
	+0.001 -0.000	+0.025 -0.000	+0.000 -0.001	+0.000 -0.025	/ mm	/ mm	/ mm	AS 568A
011 012	0.422 0.485	10.72 12.32	0.248 0.311	6.30 7.90			.004 0.10	010 011
	+0.002 -0.000	+0.05 -0.00	+0.000 -0.002	+0.00 -0.05				
013 014	0.550 0.613	13.97 15.57	0.376 0.439	9.55 11.15				012 013
015 016 017 018 019	0.675 0.738 0.800 0.863 0.925	17.15 18.75 20.32 21.92 23.50	0.501 0.564 0.626 0.689 0.751	12.73 14.33 15.90 17.50 19.08	.081 .086			014 015 016 017 018
020 021 022 023 024	0.991 1.053 1.116 1.178 1.241	25.17 26.75 28.35 29.92 31.52	0.817 0.879 0.942 1.004 1.067	20.75 22.33 23.93 25.50 27.10	2.00 2.19	.005 .015	.005	019 020 021 022 023
025 026 027 028	1.303 1.366 1.428 1.491	33.10 34.70 36.27 37.87	1.129 1.192 1.254 1.317	28.68 30.28 31.85 33.45		0.38	0.13	024 025 026 027
110 111 112 113 114	0.550 0.613 0.675 0.738 0.800	13.97 15.57 17.15 18.75 20.32	0.300 0.363 0.425 0.488 0.550	7.62 9.22 10.80 12.40 13.97	.126 .131			109 110 111 112 113
115 116 117 118 119	0.863 0.925 0.991 1.053 1.116	21.92 23.50 25.17 26.75 28.35	0.613 0.675 0.741 0.803 0.866	15.57 17.15 18.82 20.40 22.00	3.20 3.33			114 115 116 117 118

	ہ Bore	ø A e Dia.	ہ Groo	ø B ve Dia.	G	R	D	O- Ring
Dash No	Inch	mm	Inch	mm	Inch	Inch	Inch	Dash No
	+0.002 -0.000	+0.05 -0.00	+0.000 -0.002	+0.00 -0.05	/ mm	/ mm	/ mm	AS 568A
120 121 122 123 124	1.178 1.241 1.303 1.366 1.428	29.92 31.52 33.10 34.70 36.27	0.928 0.991 1.053 1.116 1.178	23.57 25.17 26.75 28.35 29.92			.005	119 120 121 122 123
125 126 127 128 129	1.491 1.553 1.616 1.678 1.741	37.87 39.45 41.05 42.62 44.22	1.241 1.303 1.366 1.428 1.491	31.52 33.10 34.70 36.27 37.87			0.13	124 125 126 127 128
130 131 132 133 134	1.805 1.867 1.930 1.992 2.055	45.85 47.42 49.02 50.60 52.20	1.555 1.617 1.680 1.742 1.805	39.50 41.07 42.67 44.45 45.85	.126 .131	.005 .015	.006	129 130 131 132 133
135 136 137 138 139	2.118 2.180 2.243 2.305 2.368	53.80 55.37 56.97 58.55 60.15	1.868 1.930 1.993 2.055 2.118	47.45 49.02 50.62 52.20 53.80	3.20 3.33	0.13 0.38	0.15	134 135 136 137 138
140	2.430	61.72	2.180	55.37				139
141 142 143 144	2.493 2.555 2.618 2.680	63.32 64.90 66.50 68.07	2.243 2.305 2.368 2.430	56.97 58.55 60.15 61.72			.007	140 141 142 143
145 146 147 148 149	2.743 2.805 2.868 2.930 2.993	69.67 71.25 72.85 74.42 76.02	2.493 2.555 2.618 2.680 2.743	63.32 64.90 66.50 68.07 69.67			0.18	144 145 146 147 148

	Bor	ø A e Dia.	Groo	ø B ve Dia.	G	R	D	O- Ring	
Dash No	Inch	mm	Inch	mm	Inch	Inch	Inch	Dash No	
	+0.002 -0.000	+0.05 -0.00	+0.000 -0.002	+0.00 -0.05	/ mm	/ mm	/ mm	AS 568A	
210 211 212 213 214	0.991 1.053 1.116 1.178 1.241	25.17 26.75 28.35 29.92 31.52	0.617 0.679 0.742 0.804 0.867	15.67 17.25 18.85 20.42 22.02				208 209 210 211 212	
215 216 217 218 219	1.303 1.366 1.428 1.491 1.553	33.10 34.70 36.27 37.87 39.45	0.929 0.992 1.054 1.117 1.179	23.60 25.20 26.77 28.37 29.95			.005 0.13	213 214 215 216 217	
220 221 222	1.616 1.678 1.741	41.05 42.62 44.22	1.242 1.304 1.367	31.55 33.12 34.72					218 219 220
223 224	1.867 1.992	47.42 50.60	1.493 1.618	37.92 41.10			.006	222 223	
225 226 227	2.118 2.243 2.368	53.80 56.97 60.15	1.744 1.869 1.994	44.30 47.47 50.65	.166	.010	0.15	224 225 226	
228 229	2.493 2.618	63.32 66.50	2.119 2.244	53.82 57.00		.025		227 228	
230 231 232 233 234	2.743 2.868 2.993 3.118 3.243	69.67 72.85 76.02 79.20 82.37	2.369 2.494 2.619 2.744 2.869	60.17 63.35 66.52 69.70 72.87	4.22 4.35	0.25 0.64	0.23 0.64	.007	229 230 231 232 233
235 236 237 238 239	3.368 3.493 3.618 3.743 3.868	85.55 88.72 91.90 95.07 98.25	2.994 3.119 3.244 3.369 3.494	76.05 79.22 82.40 85.57 88.75			0.18	234 235 236 237 238	
240 241 242 243	3.993 4.118 4.243 4.368	101.42 104.60 107.77 110.95	3.619 3.744 3.869 3.994	91.92 95.10 98.27 101.45				239 240 241 242	
244	4.493	114.12	4.119	104.62			.008	243	
245 246 247	4.618 4.743 4.868	117.30 120.47 123.65	4.244 4.369 4.494	107.80 110.97 114.15			0.20	244 245 246	
325 326 327 228	1.867 1.992 2.118	47.42 50.60 53.80	1.313 1.438 1.564	33.35 36.53 39.73			.006	323 324 325	
328	2.368	60.15	1.814	46.08			0.15	320	
330 331 332 333 334	2.493 2.618 2.743 2.868 2.993	63.32 66.50 69.67 72.85 76.02	1.939 2.064 2.189 2.314 2.439	49.25 52.43 55.60 58.78 61.95	.247 .252 6.27	.020 .035 0.50	.007	328 329 330 331 332	
335 336 337 338 339	3.118 3.243 3.368 3.493 3.618	79.20 82.37 85.55 88.72 91.90	2.564 2.689 2.814 2.939 3.064	65.13 68.30 71.48 74.65 77.83	6.40	0.73	0.18	333 334 335 336 337	
340	3.743	95.07	3.189	81.00				338	

	Bor	ø A e Dia.	Groo	ø B ve Dia.	G	R	D	O- Ring
Dash No	Inch	mm	Inch	mm	Inch	Inch	Inch	Dash No
	+0.002 -0.000	+0.05 -0.00	+0.000 -0.002	+0.00 -0.05	/ mm	/ mm	/ mm	AS 568A
341 342 343 344	3.868 3.993 4.118 4.243	98.25 101.42 104.60 107.77	3.314 3.439 3.564 3.689	84.18 87.35 90.53 93.70			.007	339 340 341 342
345	4.368	110.95	3.814	96.88	.247	.020	0.18	343
346 347 348 349	4.493 4.618 4.743 4.868	114.12 117.30 120.47 123.65	3.939 4.064 4.189 4.314	100.05 103.23 106.40 109.58	.252 6.27	.035 0.50	.008	344 345 346 347
	+0.003 -0.000	+0.076 -0.000	+0.000 -0.003	+0.000 -0.076	6.40	0.73	0.20	
350 351 352	4.974 5.099 5.224	126.34 129.51 132.69	4.420 4.545 4.670	112.27 115.44 118.62			0.20	348 349 350
428 429	5.349 5.474	135.86 139.04	4.599 4.724	116.81 119.99				425 426
430 431 432 433 434	5.599 5.724 5.849 5.974 6.099	142.21 145.39 148.56 151.74 154.91	4.849 4.974 5.099 5.224 5.349	123.16 126.34 129.51 132.69 135.86				427 428 429 430 431
435 436 437 438 439	6.224 6.349 6.474 6.724 6.974	158.09 161.26 164.44 170.79 177.14	5.474 5.599 5.724 5.974 6.224	139.04 142.21 145.39 151.74 158.09			.009 0.23	432 433 434 436 437
440 441 442 443 444	7.224 7.474 7.724 7.974 8.224	183.49 189.84 196.19 202.54 208.89	6.474 6.724 6.974 7.224 7.474	164.44 170.79 177.14 183.49 189.84	.320	.020		438 439 440 441 443
445	8.474	215.24	7.724	196.19	 .325	 .035		443
446	8.974	227.94	8.224	208.89			.010	445
					8.13	0.50	0.25	
	+0.004 -0.000	+0.10 -0.00	+0.000 -0.003	+0.000 -0.076	0.20	0.70		
447 448 449	9.474 9.974 10.474	240.64 253.34 266.04	8.724 9.224 9.724	221.59 234.29 246.99				446 447 448
450 451 452 453 454	10.974 11.474 11.974 12.474 12.974	278.74 291.44 304.14 316.84 329.54	10.224 10.724 11.224 11.724 12.224	259.69 272.39 285.09 297.79 310.49			.011 0.28	449 450 451 452 453
455 456 457 458 459	13.474 13.974 14.474 14.974 15.474	342.24 354.94 367.64 380.34 393.04	12.724 13.224 13.724 14.224 14.724	323.19 335.89 348.59 361.29 373.99				454 455 456 457 458
460	15.974	405.74	15.224	386.69				459

Metric sizes.

Busak + Shamban

Γ

95

Turcon[®] Stepseal[®]K

Installation Turcon[®] Stepseal[®]K Rod, Series No. RSA7 (Old Series No. S34767)

Figure 109 Installation Drawing

Table XLVI Groove Dimensions

	Roc	ø B I Dia.	ہ Groo	ø A ve Dia.	G	R	D	O- Ring
Dash No	Inch	mm	Inch	mm	Inch	Inch	Inch	Dash No
	+0.000 -0.001	+0.000 -0.025	+0.001 -0.000	+0.025 -0.000	/ mm	/ mm	/ mm	AS 568A
010 011 012	0.248 0.310 0.373	6.30 7.87 9.47	0.422 0.484 0.547	10.72 12.29 13.89			.004 0.10	011 012 013
	+0.000 -0.002	+0.00 -0.05	+0.002 -0.000	+0.05 -0.00				
013 014	0.435 0.498	11.05 12.65	0.609 0.672	15.47 17.07				014 015
015 016 017 018 019	0.560 0.623 0.685 0.748 0.810	14.22 15.82 17.40 19.00 20.57	0.734 0.797 0.859 0.922 0.984	18.64 20.24 21.82 23.42 24.99	.081 .086 2.06	005		016 017 018 019 020
020 021 022 023 024	0.873 0.935 0.998 1.060 1.123	22.17 23.75 25.35 26.92 28.52	1.047 1.109 1.172 1.234 1.297	26.59 28.17 29.77 31.34 32.94	2.19	.005 .015 0.13	.005	021 022 023 024 025
025 026 027 028	1.185 1.248 1.310 1.373	30.10 31.70 33.27 34.87	1.359 1.422 1.484 1.547	34.52 36.12 37.69 39.29		0.38	0.13	026 027 028 028
110 111 112 113 114	0.373 0.435 0.498 0.560 0.623	9.47 11.05 12.65 14.22 15.82	0.623 0.685 0.748 0.810 0.873	15.82 17.40 19.00 20.57 22.17	.126 .131			111 112 113 114 115
115 116 117 118 119	0.685 0.748 0.810 0.873 0.935	17.40 19.00 20.52 22.17 23.75	0.935 0.998 1.060 1.123 1.185	23.75 25.35 26.92 28.52 30.10	3.20 3.33			116 117 118 119 120

	Roc	ø B I Dia.	ہ Groo	ø A ve Dia.	G	R	D	O- Ring
Dash No	Inch	mm	Inch	mm	Inch	Inch	Inch	Dash No
	+0.000 -0.002	+0.00 -0.05	+0.002 -0.000	+0.05 -0.00	/ mm	/ mm	/ mm	AS 568A
120 121 122 123 124	0.998 1.060 1.123 1.185 1.248	25.35 26.92 28.52 30.10 31.70	1.248 1.310 1.373 1.435 1.498	31.70 33.27 34.87 36.45 38.05			.005	121 122 123 124 125
125 126	1.310 1.373	33.27 34.87	1.560 1.623	39.62 41.22				126 127
127 128 129	1.435 1.498 1.560	36.45 38.05 39.62	1.685 1.748 1.810	42.80 44.40 45.97			.006	128 129 130
130 131 132	1.623 1.685 1.748	41.22 42.80 44.40	1.873 1.935 1.998	47.57 49.15 50.75	.126	.005	0.15	131 132 133
133 134	1.810 1.873	45.97 47.57	2.060 2.123	52.32 53.92	.131	.015		134 135
135 136 137 138 139	1.936 1.998 2.061 2.123 2.186	49.17 50.75 52.35 53.92 55.52	2.186 2.248 2.311 2.373 2.436	55.52 57.10 58.70 60.27 61.87	3.20 3.33	0.13 0.38	007	136 137 138 139 140
140 141 142 143 144	2.248 2.311 2.373 2.436 2.498	57.10 58.70 60.27 61.87 63.45	2.498 2.561 2.623 2.686 2.748	63.45 65.05 66.62 68.22 69.80			.007 0.18	141 142 143 144 145
145 146 147 148 149	2.561 2.623 2.686 2.748 2.811	65.05 66.62 68.22 69.80 71.40	2.811 2.873 2.936 2.998 3.061	71.40 72.97 74.57 76.15 77.75				146 147 148 149 150

	Roc	ø B I Dia.	Groo	ø A ove Dia.	G	R	D	O- Ring
Dash	Inch	mm	Inch	mm	Inch	Inch	Inch	Dash
	+0.000	+0.00	+0.002	+0.05	/ mm	/ mm	/ mm	AS 5684
210 211 212 213 214	0.748 0.810 0.873 0.935 0.998	19.00 20.57 22.17 23.75 25.35	1.122 1.184 1.247 1.309 1.372	28.50 30.07 31.67 33.25 34.85				212 213 214 215 216
215 216 217 218 219	1.060 1.123 1.185 1.248 1.310	26.92 28.52 30.10 31.70 33.27	1.434 1.497 1.559 1.622 1.684	36.42 38.02 39.60 41.20 42.77			.005 0.13	217 218 219 220 221
220 221 222	1.373 1.435 1.498	34.87 36.45 38.05	1.747 1.809 1.872	44.37 45.95 47.55				222 222 223
223 224	1.623 1.748	41.22 44.40	1.997 2.122	50.72 53.90			.006	224 225
225	1 873	47 57	2 247	57.07			0.15	226
226 227 228 229	1.998 2.123 2.248 2.373	50.75 53.92 57.10 60.27	2.372 2.497 2.622 2.747	60.25 63.42 66.60 69.77	.166 .171	.010 .025		227 228 229 230
230 231 232 233 234	2.498 2.623 2.748 2.873 2.997	63.45 66.62 69.80 72.97 76.12	2.872 2.997 3.122 3.247 3.371	72.95 76.12 79.30 82.47 85.62	4.22 4.35	0.25 0.64	.007	231 232 233 234 235
235 236 237 238 239	3.122 3.247 3.372 3.497 3.622	79.30 82.47 85.65 88.82 92.00	3.496 3.621 3.746 3.871 3.996	88.80 91.97 95.15 98.32 101.50			0.18	236 237 238 239 240
240 241 242 243 244	3.747 3.872 3.997 4.122 4.247	95.17 98.35 101.52 104.70 107.87	4.121 4.246 4.371 4.496 4.621	104.67 107.85 111.02 114.20 117.37				241 242 243 244 245
245	4.372	111.05	4.746	120.55				246
246 247	4.497 4.622	114.22 117.40	4.871 4.996	123.72 126.90			.008	247 248
							0.20	
325 326 327	1.498 1.623 1.748	38.05 41.22 44.40	2.052 2.177 2.302	51.12 55.30 58.47			.006	326 327 328
328 329	1.873 1.998	47.57 50.75	2.427 2.552	61.65 64.82	.247 .252	.020 .035		329 330
330 331 332 333 334	2.123 2.248 2.373 2.498 2.623	53.92 57.10 60.27 63.45 66.62	2.677 2.802 2.927 3.052 3.177	68.00 71.17 74.35 77.52 80.70	6.27 6.40	0.50 0.73	.007 0.18	331 332 333 334 335
335 336	2.748 2.873	69.80 72.97	3.302 3.427	83.87 87.05				336 337

	ø B Rod Dia.		ø A Groove Dia.		ø B ø A Rod Dia. Groove Dia.		G	R	D	O- Ring
Dash No	Inch	mm	Inch	mm	Inch	Inch Inch		Dash No		
	+0.000 -0.002	+0.00 -0.05	+0.002 -0.000	+0.05 -0.00	/ mm	/ mm	/ mm	AS 568A		
337 338 339	2.997 3.122 3.247	76.12 79.30 82.47	3.551 3.676 3.801	90.20 93.37 96.55				338 339 340		
340 341 342 343 344	3.372 3.497 3.622 3.747 3.872	85.65 88.82 92.00 95.17 98.35	3.926 4.051 4.176 4.301 4.426	99.72 102.90 106.07 109.25 112.42	.247 .252 6.27		.007 0.18	341 342 343 344 345		
345 346 347 348 349	3.997 4.122 4.247 4.372 4.497	101.52 104.70 107.87 111.05 114.22	4.551 4.676 4.801 4.926 5.051	115.60 118.77 121.95 125.12 128.30	 6.40			346 347 348 349 350		
	+0.000 -0.003	+0.000 -0.076	+0.003 -0.000	+0.076 -0.000						
425 426 427 428 429	4.497 4.622 4.747 4.872 4.997	114.22 117.40 120.57 123.75 126.92	5.247 5.372 5.497 5.622 5.747	133.27 136.45 139.62 142.80 145.97			009	427 428 429 430 431		
430 431 432 433 434	5.122 5.247 5.372 5.497 5.622	130.10 133.27 136.45 139.62 142.80	5.872 5.997 6.122 6.247 6.372	149.15 152.32 155.50 158.67 161.85		.020 .035 0.50	0.23	432 433 434 435 436		
435 436 437 438	5.747 5.872 5.997 6.247	145.97 149.15 152.32 158.67	6.497 6.622 6.747 6.997	165.02 168.20 171.37 177.72			.035 0.50	.0 ¹ 0.50		437 437 438 439
439	6.497	165.02	7.247	184.07		 0.73		440		
440 441 442 443 444	6.747 6.997 7.247 7.497 7.747	171.37 177.72 184.07 190.42 196.77	7.497 7.747 7.997 8.247 8.497	190.42 196.77 203.12 209.47 215.82	.320 .325 8.13			441 442 443 444 445		
445 446	7.997 8.497	203.12 215.82	8.747 9.247	222.17 234.87	8.26			445 446		
	+0.000 -0.003	+0.000 -0.076	+0.004 -0.000	+0.100 -0.000						
447 448 449	8.997 9.497 9.997	228.52 241.22 253.92	9.747 10.247 10.747	247.57 260.27 272.97			.010	447 448 449		
450 451 452 453 454	10.497 10.997 11.497 11.997 12.497	266.62 279.32 292.02 304.72 317.42	11.247 11.747 12.247 12.747 13.247	285.67 298.37 311.07 323.77 336.47			0.25	450 451 452 453 454		
455 456 457 458 459	12.997 13.497 13.997 14.497 14.997	330.12 342.82 355.52 368.22 380.92	13.747 14.247 14.747 15.247 15.747	349.17 361.87 374.57 387.27 399.97				455 456 457 458 459		
460	15.497	393.62	16.247	412.67				460		

Metric sizes.

Edition April 2004

Turcon[®] Roto Glyd Ring[®] For use with MIL-G-5514F/AS4716 Rod/Bore

Description

The Turcon[®] Roto Glyd Ring[®] is used to seal rods, axles, rotary swivel, steering units, with rotary, helical or oscillating movement.

Figure 110 Turcon[®] Roto Glyd Ring[®]

The Roto Glyd Ring[®] consists of a seal ring of high-grade Turcon[®] material activated by an O-Ring as an elastic energizing element.

The contact surface profile of the seal ring is specifically designed for use under high pressures and at low sliding speeds.

Depending on the profile cross-section of the seal, the contact surface has one or two continuous machined grooves. These have the following functions:

- Improved seal efficiency by increasing the specific surface load pressure against the sealed surface.
- Formation of lubricant reservoir and reduction in friction.

In order to improve the pressure activation of the O-Ring, the Roto Glyd $Ring^{(B)}$ has notched end faces as standard.

The geometry which holds the O-Ring has a concave form. This increases the contact surface and prevents the seal from turning with the shaft.

Availability

A large number of sizes are available both for inch and metric sizes.

Please inquire about sizes and availability early in your design phase.

For ordering examples please consult the separate $\mathsf{Turcon}^{\textcircled{B}}$ Rotary Seals catalog or contact your Shamban sales engineer.

Application Limits

The maximum values for temperature, pressure and speed given in this catalog have an accumulative effect and thus cannot be used simultaneously.

Seal performance is influenced by such factors as fluid lubrication and the ability of the hardware to dissipate heat. Testing should be conducted to confirm performance.

Technical Data

Operating	1 20 MB (4250 3)
pressure:	up to 30 MPa (4350 psi)
Speed:	up to 2 m/s (6.37 ft/s) continuous
Temperature:	-54 °C to + 200 °C
	(-65°F to + 500 °F)
	(depending on O-Ring material)

Frictional Power

Guiding values for the frictional power can be determined from the graph below. They are shown as a function of the sliding speed and operating pressure for a shaft diameter of 50 mm with an oil temperature of 60° C (140° F). At higher temperatures, these application limits must be reduced.

Formular for other dia. : $p \simeq p_{50} x \left(\frac{d}{50 \text{ mm}}\right)$ [W]

Figure 111 Friction for Turcon[®] Roto Glyd Ring[®]

Turcon[®] Roto Glyd Ring[®]

Case Story

Figure 112 Nose Landing Gear **Problem**

Friction and leakage control.

Solution Turcon[®] Roto Glyd Ring[®].

Turcon[®] Varilip[®]

Description

Due to their elastomer sealing lip, standard radial shaft seals have only a limited application range with respect to pressure, temperature, media and loads.

Varilip[®] shaft seals from Shamban extend this application range by using modern Turcon[®] materials developed specially for rotational applications.

The Varilip[®] is characterized in particular by their low friction, which reduces heat build-up and permits higher rotary speeds, and therefore longer life.

The Varilip[®] shaft seal is dimensionally interchangeable with the shaft seals to DIN 3760 and ISO 6194/1. Inch sizes are also available.

The minimal groove size required for Varilip[®] allows its use as a pressurized seal where the installation of a mechanical shaft seal would not be possible due to space envelope limits.

Figure 113 Turcon[®] Varilip[®], Type A

Method of Operation

In contrast to conventional shaft seals, the Varilip[®] seal requires no metallic spring to energize the sealing lip.

As can be seen from Figure 113, dynamic sealing is affected by the radial load of the sealing lip against the shaft. Static sealing is affected by a press fit of the metallic casing in the housing bore, and by an elastomeric flat gasket between metallic housing and Turcon[®] sealing lip.

Technical Data

Operating pressure: up to 2 MPa (290 psi)Speed:40 m/s (131 ft/s)Temperature range: -60°C to +200°C
(-76°F to +390°F)Media:Practically all fluids, chemicals and
gases.

Application Limits

The limits for temperature, pressure and speed given in this catalog cannot be fully exploited at the same time.

Furthermore, the lubrication properties of the media, heat dissipation of the hardware, and the condition of the shaft surface, affects the application limits.

The following p x v values can be used as general guidelines: For shaft diameter from 30 mm (1.2 in) to 170 mm (6.7 in): up to $\frac{3}{2}$ (MPa x m/s) with good lubrication

up io	3	(MFa x m/s) with good lubrication
up to	1.5	(MPa x m/s) with poor lubrication
up to	10	(MPa x m/s) with very good cooling

For smaller shaft diameters, the values must be reduced.

Turcon[®] Varilip[®], Type A

Type A (Fig. 114) is a one-lip seal suitable for use in standard applications up to $p_{max} = 0.5$ MPa (73 psi) where a radial shaft seal would be unable to withstand the temperature, friction, medium or poor lubrication. Type A allows high- speed shafts with peripheral speeds of up to 40 m/s (131 ft/s) to be sealed.

Figure 114 Turcon[®] Varilip[®], Type A

Turcon[®] Varilip[®], Type B

Type B (Fig. 115) is the preferred choice for applications requiring high leakage control or where contaminated media are to be sealed. This two-lip type offers greater safety than the Type A.

Turcon[®] Varilip[®], Type C

The Varilip[®] Type C can be used for applications involving higher pressures for which a simple elastomer radial shaft seal can no longer be considered. Due to a reinforcement of the sealing lip, pressures of up to 2 MPa (290 psi) are possible, e.g. as pump, shaft or rotor seals.

Figure 116 Turcon[®] Varilip[®], Type C

Propeller drive for Zeppelin NT \rightarrow

Working conditions: Temperaure: -30°C to +120°C (-22°F to 250°F) Pressure: Max. 5 bar Speed: Max. 3.4 m/sec.

Solution

Shamban Turcon[®] Varilip[®], Type D (special).

Turcon[®] Varilip[®], Type D

While Types A to C can be used to seal against pressures from only one side, Type D can be subjected to pressure from both sides. Pressures of up to 0.1 MPa (14.5 psi) are permissible. The separation of two different media using a single seal is possible. The second lip can also take on the function of a wiper or dust lip. A grease packing between the sealing lips is recommended.

Availability

A large number of sizes are available both for inch and metric sizes.

Please inquire about sizes and availability early in your design phase.

For ordering examples please consult the separate Varilip[®] catalog or contact your Shamban sales engineer.

Case Story

Figure 118 Propeller Drive for Zeppelin NT

Seals for Boeing Gland Standard BACS11AA

Description

The Boeing Footseal gland/seal specification BACS11AA was intended for use in hydraulic systems to provide maximum O-Ring life with minimum friction.

Application Example

Figure 120 B777 Flight Controls

Alternative Seal Designs

The following Shamban seals are available in modified form to fit the BACS11AA gland:

Footseal II	Part no.	RF21	(S33121)
Plus Seal®II	Part no.	RP47	(S38647)
Wedgpak®	Part no.	RA49	(S38649)
Hatseal [®] II	Part no.	RH53	(S34853) *)

^{*)} Only from 100 Series and up.

Figure 121 Alternative Seal Design

The alternative designs should only be used after consulting your Shamban sales engineer.

Footseal II *)

Description

The Footseal II rod seal was developed as an improvement to the original Footseal designed to fit the existing Boeing BACS11AA rod gland standard.

Method of Operation

Similar to other slipper seal designs, the Footseal II utilizes an O-Ring to preload the seal ring.

When the system pressure is increased, the oil film under the seal is further reduced. Improvements in the Footseal II result in increased low pressure leakage performance and longer life when compared to the standard Footseal.

The Footseal II also utilizes circumferential grooves to improve leakage performance and provide longer life sealing.

Advantages

- Good static sealing effect
- Low friction
- Fits BACS11AA gland standard

Technical Data

Operating pressure: 21 MPa (3000 psi)

Speed: 15.0 m/s (49.2 ft/s)

Temperature range: -54°C to +200°C (-65°F to +390°F) (depending on elastomer material) Clearance:

Media:

As per BACS11AA gland design

Phosphate Ester, Mineral oil-based hydraulic fluids, Flame retardant hydraulic fluids, Environmentally safe hydraulic fluids and others, depending on the elastomer material (see Table IV, page 16)

Materials

See Table I, page 12 and Table III, page 15.

Series

The Footseal II follows the series as described in BACS11AA.

Ordering Example

Footseal II for BACS11AA gland, standard series, Series No. RF21

Dash No.: 214

Material: T99

Order No.	<u></u>
Series No.	
Standard	
Groove Standard (Bo	peing)
BACS11AA size	
Seal part includes Certificate of conform	nance (C.C.)
<u>Turcon[®] material co</u>	de

Note: O-Ring must be ordered seperately.

*) Shamban is the only authorized manufacturer of the Footseal II

Selection of the Scraper Element

Scraper is a general term applied to those configurations installed in hydraulic cylinders for the purpose of scraping contamination from rods, or excluding contamination from the hydraulic system. The term *scraper* is generally used in reference to those geometries that, although they provide a scraping function, do not prevent ingression of small particles into the system. Excluders, in addition to providing a scraping function, also minimize the ingression of small particles into the system, and act as a secondary seal.

It is important to consider the scraper selection as an element of a sealing system. Despite the proper selection of primary and secondary seals, if a scraper appropriate for the application is not selected, the resulting migration of contamination into a system can cause damage to wear rings, seals, and hardware components. Scrapers thus form part of a functional system, and therefore must be viewed in combination with seals.

In order to satisfy a variety of technical and economic demands, Shamban has developed a complete range of scrapers with optimized geometries made from high-quality materials.

An axial notch can be added to the inner scraping lip of a double-acting scraper thereby providing a path to vent any interstage pressure to the outside while still retaining the double-acting scraping effect. (See Fig. 128)

For systems with extreme working conditions, a spring energized scraper like the Variseal[®]M2S ensures a wide temperature range and optimal chemical resistance.

The final choice of scraper type and material must also take account of the detailed information on the individual scraper type elements.

Please do not hesitate to contact your sales engineer for further information on specific applications and special technical questions.

Note on Ordering

All multi-element standard seals in this catalog which contain a proprietary elastomer part such as the Plus Seal[®] are always supplied as complete seal sets. The supply includes the seal and matching elastomer energizing element.

O-Ring activated seals and scrapers are normally supplied without the elastomer in order to increase the flexibility of delivery and stocking.

Exceptions to the above may be determined with your local Shamban sales engineer to find the most suitable solution.

Older designs no longer contained in this catalog naturally continue to be available. For all new applications we recommend the use of the types and preferred sizes listed in this catalog.

Other combinations of Turcon[®] materials and special designs can be developed and supplied for special applications in intermediate sizes up to 3000 mm (10 ft) diameter, provided there is sufficient demand. Sizes over 3000 mm (10 ft) are available for specific designs.

Groove Distance

When installing scrapers in conjunction with rod seals where interstage pressure is a concern, we recommend the following positioning:

- Distance between seal groove and scraper groove L should exceed groove depth x
- Oil reservoir to collect the oil to be returned as shown in Figure 123.

Figure 123 Recommendations for Groove Distance

Turcon[®] DC Scraper Ring

Description

The Turcon[®] DC Scraper Ring replaces the old S11065 Series designed for the MS33675 military gland standard. This design utilizes a dual scraping lip Turcon[®] element which is scarf cut and energized by a garter spring.

Figure 124 Turcon[®] DC-Scraper Ring

Method of Operation

This design provides a good scraping effect and also offers a much more improved stability under linear actuation than the old S11065 design. Two possible paths for the ingression of contamination exist with this design: Through the scarf cut in the Turcon[®] scraping element, and through the garter spring. This design should not be used in environments where severe contamination exists.

Advantages

- Fits the MS33675 groove + BACS34A
- Low friction
- Easy installation
- Can be installed in closed grooves
- Two scraping lips
- Good stability in the groove
- Excellent chemical resistance due to the stainless steel spring activation

Technical Data

Speed:	15 m/s (49.2 ft/s)
Temperature range	:-200°C to +200°C
	(-328°F to +390°F)
Media:	Practically all fluids, chemicals and
	gases

Materials

Turcon[®] T05 is standard. For other materials please see Table I, page 12.

Series

The sizes in Table XLVIII, Installation Dimensions, page 109 are the recommended standard sizes. Please consult your Shamban sales engineer.

Ordering Example

DC Scraper, standard series, Series No. WM82

MS33675 Dash No: 012 Corresponding MIL-G-5514F Dash No: 217

Material: T05 (standard), see Table I, Page 12

<u>Order No. WM82 0 \$ 012 A 1</u>	05
Series No.	
0 = No notch (standard)	
Groove Standard	
Dash No. (MS33675)	
Seal part includes Certificate of conformance (C.C.)	
Turcon [®] material code	

Ordering Example

Turcon[®] Excluder[®]DC, Series E, standard series, without axial notch, Series No. WE65, see page 106.

MS33675 Dash No: 017 Corresponding MIL-G-5514F Dash No: 325

Material: T05 (standard), see Table I, Page 12

Note: O-Ring must be ordered seperately. Sizes can be found in Table XLVIII, page 109.

Turcon[®] Excluder[®]DC, Series E

Description

The Turcon[®] Excluder[®]DC, Series E consists of an uncut, dual scraping lip Turcon[®] element energized by a standard O-Ring. This design is offered as a retrofit to the MS33675 military gland standard which previously utilized a cut, spring energized scraper design.

Method of Operation

This design addresses the two contamination paths inherent in the DC Scraper Ring design. The scarf cut is eliminated, and the garter spring is replaced with an O-Ring. In effect, these two changes create a secondary sealing element. The outboard scraping lip minimizes the ingression of water and contaminates, and equally important, the inboard scraping lip will contain any fluid leakage that may pass the primary seal. This fluid will provide lubrication for the sealing system, reducing friction and extending the life of the sealing system.

Note, for diameters smaller than 25 mm (1 inch) a split groove is recommended.

Shamban offers other Excluder[®] designs that have better performance under the above mentioned conditions. For best performance results, the MS33675 gland standard is not recommended. Also see the section Excluder[®]DC, page 107.

Please contact your Shamban sales engineer for further information.

Advantages

- Fits the MS33675 groove
- Acts as a secondary seal
- Two scraping lips
- Good stability in the groove

Figure 126 Relationship Between the Profile Cross-Sections

Technical Data

Speed:	15 m/s
Temperature range	: -54°C to +200°C (-65°F to +390°F) (depending on O-Ring material)
Media:	Mineral oil-based hydraulic fluids, flame retardant hydraulic fluids, environmentally safe hydraulic fluids (bio-oils), Phosphate Ester, water and

Materials

Turcon[®] T05 is standard. For other materials please see Table I, page 12.

others, depending on the O-Ring material (see Tab. IV, page 16)

Series

The sizes in Table XLVIII, Installation Dimensions, page 109 are the recommended standard sizes. Larger and smaller cross-sections are also available, please consult your Shamban sales engineer.

Turcon[®] Excluder[®]DC

Description

The design of the Turcon[®] Excluder[®]DC optimizes the device's ability to exclude contamination without the restrictions and limitations of the MS33675 gland dimensions. The gland has been altered to accommodate a larger cross section O-Ring for better activation of the scraping lips.

Figure 127 Turcon[®] Excluder[®]DC

Method of Operation

The wider groove, combined with a better support on the downstream side of the Excluder[®]DC, has resulted in a far more reliable exclusion device than those utilizing the MS33675 gland standard. These changes have led to widespread acceptance of the Excluder[®]DC as the state-of-the-art exclusion device for aerospace applications.

Due to the heavy cross-section of the Turcon[®] element on the downstream side, the Excluder[®]DC will accept a significant back-pressure without being extruded out of the groove. If high back-pressure is expected, we recommend use of the Excluder[®]DC with the axial notch.

Figure 128 Axial Notch (see page 105)

Open/split grooves are recommended for diameters smaller than 35 mm (1.4 in).

Advantages

- Very efficient scraping lips
- Capable of scraping light ice covering rods
- Very stable and reliable design
- Acts as a secondary seal.

Technical Data

Speed:

Temperature rang	e: -54	°C t	o +2	60°C				
	(-65	°F to	5 + 50)0°F)				
	(dep	end	ling o	n O-F	Ring	m	ate	erial)

15 m/s (49 ft/s)

Media:

Mineral oil-based hydraulic fluids, flame retardant hydraulic fluids, environmentally safe hydraulic fluids (bio-oils), Phosphate Ester, water and others, depending on the O-Ring material (see Table IV, page 16)

Materials

 ${\sf Turcon}^{\circledast}$ T05 is standard. For other materials, please see Table I, page 12.

Design and Installation Recommendations

Scrapers and excluders can be installed either in split or in closed grooves, depending upon cross-section and rod diameter. See below for our recommendations:

Table XLVII Installation in Closed Grooves

MS33675	Size P/N	Rod		
1/4	B100			
5/16	B200	open grooves		
3/8	B300	recommended		
7/16	B400			
001 - ∞	B001	closed grooves possible		

Ordering Example

Turcon[®] Excluder[®]DC for MS33675, rod

Dash size.: 5/16

Part No.: WE250B200AT05NG

Series

The sizes in Table XLVIII, Installation Dimensions, page 109 are the recommended standard sizes. Larger and smaller cross sections are also available. Please consult your Shamban sales engineer. Please note that the Excluder[®] size follows the dash numbering system as per MS33675 and must be ordered with this dash No. and not the MIL-G-5514F/AS4716 dash No.

Figure 129 Relationship Between the Profile Cross-Sections

Ordering Example

 $\mathsf{Turcon}^{\circledast}$ Excluder $^{\circledast}\mathsf{DC},$ standard series, without axial notch, Series No. WE25

MS33675 Dash No: 005 Corresponding MIL-G-5514F Dash No: 210

Material: T05 (standard), see Table I, Page 12

Ordering Example

Turcon[®] Excluder[®]DC, standard series, with axial notch Series No. WE25 from Table XLVIII, page 109

MS 33675 Dash No: 005 Corresponding MIL-G-5514F Dash No: 210

Material: T05 (standard), see Table I, Page 12

DC Excluder, light series w, smaller cross section is available. Consult Your Shamban Sales Engineer.

Notes:

Turcon[®] T05 is the standard material for the Excluder[®]DC due to its flexible properties. Other materials may be chosen. For example Turcon[®] T42 is preferred to scrape sticky deposits off the rod.

For the WE25 series, both an over- and under-size Excluder[®]DC is available for hard and light working conditions. Please contact your Shamban sales engineer for details.

Please note that O-Rings must be ordered separately ! Sizes can be found in Table XLVIII, page 109. Without the O-Ring the Excluder[®]DC has unlimited shelf life.

 $\mathsf{Excluder}^{\circledast}$ to fit larger and smaller grooves than mentioned in Table XLVIII are available upon request.

Installation Turcon[®] Excluder[®]DC, Series No. WE25 (Old Series No. S32925), Turcon[®] Excluder[®]DC, Series E, Series No. WE65 (Old Series No S33865) and Turcon[®] DC Scraper, Series No. WM82 (Old Series No. S34382)

Figure 130 Installation Drawing

Table XLVIII Groove Dimensions

Rod Size	Rod D	ia. øB	Shamban Size WE25			Shamban Size WE25 MS33675, WE65 and WM82							
MS-3367	Inch	mm	Groov øl	e Dia. A ₁	Width G ₁	Dia. Cl. F (max)	O-Ring size AS	Groov øl	re Dia. A ₂	Di Clear Ø	a. ance D	Width G ₂	O-Ring size only WE65
С			Inch	mm	Inch / mm	Inch / mm	A80C	Inch	mm	Inch	mm	Inch / mm	AS 568A
	+0.000 -0.001	+0.00 -0.03	+0.002 -0.000	+0.05 -0.00	7.4.4			+0.004 -0.000	+0.10 -0.00	+0.005 -0.000	+0.13 -0.00		
1/4 5/16 3/8 7/16	0.248 0.310 0.373 0.435	6.30 7.87 9.47 11.05	0.436 0.498 0.561 0.623	11.07 12.65 14.25 15.82	.144 +.005/-0 3.66 +0.13/-0		011 012 013 014	0.510 0.572 0.636 0.697	12.95 14.53 16.15 17.70	0.398 0.460 0.523 0.585	10.11 11.68 13.28 14.86		012 013 014 015
	+0.000 -0.002	+0.00 -0.05											
001 002 003 004	0.498 0.560 0.623 0.685	12.65 14.22 15.82 17.40	0.766 0.828 0.891 0.953	19.46 21.03 22.63 24.21			113 114 115 116	0.760 0.823 0.885 0.948	19.30 20.90 22.48 24.08	0.647 0.710 0.772 0.834	16.43 18.03 19.61 21.18		016 017 018 019
005 006 007 008 009	0.748 0.810 0.873 0.935 0.998	19.00 20.57 22.17 23.75 25.35	1.016 1.078 1.141 1.203 1.266	25.81 27.38 28.98 30.56 32.16	.195 +.005/-0 4.95 +0.13/-0	.042 1.07	117 118 119 120 121	1.010 1.086 1.148 1.210 1.273	25.65 27.58 29.16 30.73 32.33	0.897 0.949 1.012 1.074 1.136	22.78 24.10 25.70 27.28 28.85	.104 +.005/-0 2.64 +0.13/-0	020 021 022 023 024
010 011 012 013 014	1.060 1.123 1.185 1.248 1.310	26.92 28.52 30.10 31.70 33.27	1.328 1.391 1.453 1.516 1.578	33.73 35.33 36.91 38.51 40.08			122 123 124 125 126	1.335 1.398 1.460 1.523 1.614	33.91 35.51 37.08 38.68 41.00	1.199 1.262 1.324 1.386 1.480	30.45 32.05 33.63 35.20 37.59		025 026 027 028 029
015 016	1.373 1.435	34.87 36.45	1.641 1.703	41.68 43.26			127 128	1.677 1.739	42.60 44.17	1.542 1.605	39.17 40.77		029 030
017 018 019	1.498 1.623 1.748	38.05 41.22 44.40	1.766 1.891 2.016	44.86 48.03 51.21			129 131 133	1.802 1.927 2.052	45.77 48.95 52.12	1.668 1.793 1.918	42.37 45.54 48.72		030 031 032

Rod Size	Rod D	ia. øB	Shamban Size WE25		e WE25 MS33675, WE65 and WM82								
MS	Inch	mm	Groov	e Dia.	Width	Dia.	O-Ring	Groov	e Dia.	Di	a.	Width	O-Ring
:3367			ø	A ₁	G ₁	(max)	AS	ø	A ₂	Ø	ance D	G ₂	only WE65
15			Inch	mm	Inch	Inch /	568A	Inch	mm	Inch	mm	Inch	AS
					mm	mm						mm	568A
	+0.000 -0.002	+0.00 -0.05	+0.002 -0.000	+0.05 -0.00				+0.004 -0.000	+0.10 -0.00	+0.005 -0.000	+0.13 -0.00		
020	1.873	47.57	2.141	54.38	.195		135	2.177	55.30	2.043	51.89	.104	033
022	2.123	53.92 57 10	2.391	60.73	+.005/-0		139	2.427	61.65	2.303	58.50	+.005/-0	035
024	2.373	60.27	2.641	67.08	4.95 +0.13/-0		143	2.677	68.00 71.17	2.420	64.85	2.64 +0.13/-0	037
025	2.470	66.62	2.700	75.46			222	2.002	75.02	2.0/8	08.02 71.08		030
027	2.748	69.80 72.97	3.096	78.64			233	3.114	79.10	2.959	75.16		040
029	2.997	76.12	3.345	84.96 88.14			235	3.364	85.45 88.62	3.209	81.51 84.68	.119	041
031	3.247	82.47	3.595	91.31			237	3.614	91.80	3.459	87.86	+.005/-0	042
032 033	3.372 3.497	85.65 88.82	3.720 3.845	94.49 97.66			238 239	3.739 3.864	94.97 98.15	3.584 3.709	91.03 94.21	3.02 +0.13/-0	043 043
034 035	3.622 3.747	92.00 95.17	3.970 4.095	100.84 104.01			240 241	3.989 4.114	101.32 104.50	3.834 3.959	97.38 100.56		044 044
036	3.872 3.007	98.35 101.52	4.220	107.19			242	4.239	107.67	4.084	103.73		045 156
038	4.122	104.70	4.470	113.54			243	4.552	115.62	4.365	110.87		156
040	4.372	111.05	4.720	119.89			246	4.802	121.97	4.615	117.22		157
	+0.000 -0.003	+0.00 -0.08	+0.003 -0.000	+0.08 -0.00				+0.005 -0.000	+0.13 -0.00				
041 042	4.497 4.622	114.22 117.40	4.845 4.970	123.06 126.24	.240 +.005/-0	.042	247 248	4.927 5.052	125.15 128.32	4.740 4.865	120.40 123.57	.135	158 158
043 044	4.747 4.872	120.57 123.75	5.095 5.220	129.41 132.59	6.10	1.07	249 250	5.177 5.302	131.50 134.67	4.990 5.115	126.75 129.92	3 43	159 159
045	4.997	126.92	5.345	135.76	+0.13/-0		251	5.427	137.85	5.240	133.10	+0.13/-0	160
046 047	5.122 5.247	130.10 133.27	5.470 5.595	138.94			252 253	5.552 5.677	141.02 144.20	5.365 5.490	136.27 139.45		160 161
048 049	5.372 5.497	136.45 139.62	5.720 5.845	145.29 148.46			254 255	5.802 5.927	147.37 150.55	5.615 5.740	142.62 145.80		161 162
050 051	5.622 5.747	142.80 145.97	5.970	151.64 154.81			256 257	6.114	155.30	5.896	149.76		162 163
052	5.872	149.15	6.220 6.345	157.99			258 258	6.364 6.489	161.65	6.146 6.272	156.11		163 164
054	6.247	158.67	6.595	167.51			259	6.739	171.17	6.522	165.66		165
055 056	6.497 6.747	165.02 171.37	6.845 7.095	173.86 180.21			260 261	6.989 7.239	177.52 183.87	6.772 7.022	172.01 178.36	151	166 167
057 058	6.997 7.247	177.72 184.07	7.345 7.595	186.56 192.91			262 263	7.489 7.739	190.22 196.57	7.272 7.522	184.71 191.82	+.005/-0	168 169
059	7.497	190.42	7.845	199.26			264	7.989	202.92	7.772	197.41	3.84	170
060	/./4/	190.//	+0.005	+0.13			200	8.239	209.27	8.022	203.76	10.10, 0	171
061	7 007	203 12	-0.000	-0.00			266	8 /80	215.62	8 272	210 11		172
062	8.497	215.82	8.845 9.345	224.66			268 270	8.989 9.489	213.02 228.32	8.772	222.81		174
064	9.497 9.997	241.22 253.92	9.845 10.345	250.06			272 274	9.989 10.489	253.72 266.42	9.772	248.21		178
066	10.497	266.62	10.845	275.46			275	10.989	279.12	10.772	273.61		
067	10.997	279.32	11.345	288.16			276	11.489	291.82	11.272	286.31		
068 069	11.497 11.997	292.02 304.72	11.845 12.345	300.86 313.56			277 278	11.989	304.52 317.22	11.772	299.01 311.71	.166 +.005/-0	278 278
070	12.497 12.997	317.42	12.845	326.26 338.96			278 279	12.989	329.92	13.272	324.41 337.11	4.22	279 279

■ Turcon[®] Variseal[®]M2S Scraper

Description

The Turcon[®] Variseal[®]M2S is a single-acting seal/scraper consisting of a U-shaped seal jacket and a V-shaped corrosion resistant spring.

The most unique characteristic of the Variseal[®]M2S is the newly developed asymmetric seal profile, where the dynamic lip has an optimized heavy profile, and offers long service life and a good scraping effect, even in highly viscous media.

Figure 131 Turcon[®] Variseal[®]M2S

The Variseal[®]M2S can be sterilized and is available in a special Hi-Clean version where the spring cavity is filled with silicone to prevent contaminants from being entrapped in the seal. This design also works well in applications involving mud, slurries, ice, and prevents grit from packing into the seal cavity and inhibiting the spring action.

Variseal[®]M2S can be installed in grooves to MIL-G-5514F/ AS4716 and ISO 3771. The seal can only be installed to a limited extent in closed grooves. Installation instructions, see page 75. Utilize Table XXIX and Table XXXI.

Advantages

- Excellent scraping effect
- Reciprocating and turning movement
- Low friction characteristics for precise control
- High abrasion resistance and dimensional stability
- Can handle rapid changes in temperature
- Suitable for use in a variety of caustic media
- Can be sterilized
- Unlimited shelf life.

Technical Data

Speed:	Reciprocating up to 15 m/s (49.8 ft.) Turning up to 0.5 m/s (1.65 ft/s)
Temperature:	-70°C to +260°C (-94°F to +500°F)
	For specific applications at lower temperatures, please ask your Shamban sales engineer
Media:	Typically fluids with medium to high viscocity and media containing hard particles

Materials

For spring and material selection, see Table XXIV, page 70.

Installation Variseal[®]M2S Scraper, Series No. RVC, Rod

Figure 132 Installation Drawing

 Table XLIX Groove Dimensions (metric)

Series No.	Rod Diameter ø B h9		Groove Diameter	Groove Width	Radius	Step ²⁾ Height		Radial (D/2	Clearance max.*	
	Recommended Range	Extended ¹⁾ Range	ø A H9	L ₁ +0.2	r ₁	x	<2 MPa (300 psi)	<10 MPa (1500 psi)	<21 MPa (3000 psi)	<40 MPa (5800 psi)
RVC0	3.0 - 9.9	3.0 - 40.0	øB + 2.9	2.4	0.4	0.4	0.20	0.10	0.08	0.05
RVC1	10.0 - 19.9	6.0 - 200.0 ³⁾	øB + 4.5	3.6	0.4	0.6	0.25	0.15	0.10	0.07
RVC2	20.0 - 39.9	10.0 - 400.0 ³⁾	øB + 6.2	4.8	0.6	0.7	0.35	0.20	0.15	0.08
RVC3	40.0 - 119.9	20.0 - 700.0 ³⁾	øB + 9.4	7.1	0.8	0.8	0.50	0.25	0.20	0.10
RVC4	120.0 - 999.9	35.0 - 999.9 ³⁾	øB + 12.2	9.5	0.8	0.9	0.60	0.30	0.25	0.12

* At pressures > 40 MPa: D/2 max. use H8/f8

¹⁾ Available on request

²⁾ Maximum $X = 0.02 \times B$

Ordering Example

Turcon[®] Variseal[®]M2S, Series RVC3. Rod diameter: øB = 80.0 mm Part No: RVC300800

Select the materials from Table I, page 12 and Table XXIV, page 70. The corresponding code numbers are appended to the Part No. Together these form the order number.

The order number for all intermediate sizes not shown in Table XLIX can be determined by following the example opposite. ³⁾ For diameters larger than "Recommended Range": the tolerance on ØA is changed from H9 to H8. For pressure above 40 MPa (5000 psi), please contact your Shamban sales engineer.

<u>Order No.</u> <u>RVC3 0</u> 0800 <u>A</u> <u>T40 S</u> <u>D</u>
Series No.
Standard
Rod diameter x 10
Seal part includes Certificate of conformance (C.C.)
Turcon [®] material code
Material Code - spring
Hi-Clean - option

Installation Variseal[®]M2S Scraper, Series No. PVC, Bore

Figure 133 Installation Drawing

Table L Groove Dimensions (metric)

Series No.	Bore Diameter øA H9		Groove Diameter	Groove Width	Radius	Step2) Height		Radial (D/2	Clearance max*	
	Recommended Range	Extended1) Range	ø B h9	L ₁ +0.2	r ₁	Y	<2 MPa (300 psi)	<10 MPa (1500 psi)	<21 MPa (3000 psi)	<40 MPa (5800 psi)
PVC0	6.0 - 13.9	6.0 - 40.0	øA-2.9	2.4	0.4	0.4	0.20	0.10	0.08	0.05
PVC1	14.0 - 24.9	10.0 - 200.0 ³⁾	øA-4.5	3.6	0.4	0.6	0.25	0.15	0.10	0.07
PVC2	25.0 - 45.9	16.0 - 400.0 ³⁾	øA-6.2	4.8	0.6	0.7	0.35	0.20	0.15	0.08
PVC3	46.0 - 124.9	28.0 - 700.0 ³⁾	øA-9.4	7.1	0.8	0.8	0.50	0.25	0.20	0.10
PVC4	125.0 - 999.9	45.0 - 999.9 ³⁾	øA-12.2	9.5	0.8	0.9	0.60	0.30	0.25	0.12

*At pressures > **40 MPa** D/2_{max} use H8/f8 ¹⁾ Available on request.

²⁾ Maximum Y = $\dot{0}.035 \times a$

Ordering example

Turcon[®] Variseal[®]M2S, Series PVC3. Bore diameter: øA = 80.0 mm Part No.: PVC300800

Select the materials from Table I, page 12 and Table XXIV, page 70. The corresponding code numbers are appended to the Part No. Together these form the order number.

For all intermediate sizes not shown in Table L, the Order No. can be determined from the example shown opposite.

³⁾ For diameters larger than "Recommended Range": the tolerance on øB is changed from h9 to h8. For pressure above 40 MPa (5000 PSI), please contact your Shamban sales engineer.

<u>Order No.</u> <u>PVC3 0</u> <u>0800 A</u> <u>T40 S</u> <u>D</u>
Series No.
Standard
Bore diameter x 10
Seal part includes Certificate of conformance (C.C.)
Turcon [®] material code
Material Code - spring
Hi-Clean - option

■ Turcite[®] Slydring[®] / Luytex[®] Slydring[®]

The purpose of the rings is to guide the piston and rod of a working cylinder and to absorb the transverse forces which may occur. Metallic contact between the sliding parts of the cylinder must be prevented. Non-metallic Slydring[®] offer major benefits compared with the traditional metallic bearings:

- Cost efficient.
- High load bearing capacity.
- Eliminates local stress concentrations.
- Very wear-resistant, long service life.
- Eliminates galling.
- Good friction characteristics.
- Damping of mechanical vibrations.
- Protection of the seal against "dieseling".
- Eliminates hydrodynamic problems in the guide system.
- Easy installation.
- Low maintenance costs.

Designs

Three different types of Slydring[®] materials are available depending upon application demands:

- Highly wear-resistant, low friction, specially modified Turcite[®] materials for low to medium loads - Slydring[®].
- Luytex[®] fabric composite materials for high loads and transverse forces - Slydring[®].
- Zurcon[®]. High modulus thermoplastics for high loads, temperature with long service life.

Slydring[®] for Aerospace Applications

In the past, due to the imposed limitations of MIL-G-5514F/AS4716 and the minimum required clearance gaps necessary to minimize seal extrusion, Slydring[®] use has been limited. The use of Slydring[®] often requires larger clearance gaps.

With the trend toward higher hydraulic system pressures, resulting in higher sideloads, the use of Slydring[®] becomes necessary in order to protect primary seals and hardware.

Since no industry standard has been developed for $\mathsf{Slydring}^{\texttt{B}},$ we have a wide range of sizes available in preformed rings.

Slydring[®] are provided as cut rings with an angle cut as standard. For special applications, other cut types are available; consult your Shamban sales engineer.

Material	Filler	Technico	al Data	Application		
Material Designation		Temperature	Velocity			
		C°/F°	m/s (ft/s)			
Turcon [®] T08	High filled bronze					
Turcon [®] T10 ²⁾	Carbon / Graphite	-80 to +200 (-112 to +392)	15 (99)	Standard bearing for low to medium load		
Turcon [®] T29	Carbon fiber					
Luytex [®] C380	Polyesther resin + PTFE	-60 to +130 (-76 to +266)	1 (3.3)	High sideload ¹⁾		
Zurcon [®] Z43	High modulus thermoplastic and PTFE + Carbon	-80 to +200 (-112 to +392)	15 (99)	High speed, temperature and pressure. Excellent for PFC		

Table LI Selection Criteria for Turcite[®] Slydring[®] / Luytex[®] Slydrina[®]

Consult your Shamban sales engineer prior to applying Luytex[®] 1) 2)

Turcon[®] T11, used in North America is equivalent to Turcon[®] T10.

Installation Recommendations, Turcite $^{\rm ®}$ Slydring $^{\rm ®}$ / Luytex $^{\rm ®}$ Slydring $^{\rm ®}$ for Piston Series No. GP0 (Old Series No. S34545, S34546 and S34547)

Figure 134 Installation Drawing

Table LII Groove Din	nensions
----------------------	----------

Series No.	Bore Diameter		Groove Diameter		Groove Width		Radial Clearance	
	Inch	mm	Inch	mm	Inch	mm	Inch	mm
	øA	ø A	ø F h8	ø F h8	G +0.010	G +0.25	D/2 _{max.}	D/2 _{max.}
GP02X	0.235 - 1.491	5.97 - 37.87	øA - 0.064	øA - 1.63	0.135	3.43	0.007	0.18
GP04X	0.235 - 1.491	5.97 - 37.87	øA - 0.064	øA - 1.63	0.260	6.60	0.007	0.18
GP06X	0.235 - 1.491	5.97 - 37.87	øA - 0.064	øA - 1.63	0.385	9.78	0.007	0.18
GP08X	0.235 - 1.491	5.97 - 37.87	øA - 0.064	øA - 1.63	0.510	12.95	0.007	0.18
GP02W	0.550 - 4.468	13.97 - 113.49	øA - 0.126	øA - 3.20	0.135	3.43	0.009	0.23
GP04W	0.550 - 4.468	13.97 - 113.49	øA - 0.126	øA - 3.20	0.260	6.60	0.009	0.23
GP06W	0.550 - 4.468	13.97 - 113.49	øA - 0.126	øA - 3.20	0.385	9.78	0.009	0.23
GP08W	0.550 - 4.468	13.97 - 113.49	øA - 0.126	øA - 3.20	0.510	12.95	0.009	0.23
GP02Y	2.993 - 10.474	76.02 - 266.04	øA - 0.188	øA - 4.78	0.135	3.43	0.011	0.28
GP04Y	2.993 - 10.474	76.02 - 266.04	øA - 0.188	øA - 4.78	0.260	6.60	0.011	0.28
GP06Y	2.993 - 10.474	76.02 - 266.04	øA - 0.188	øA - 4.78	0.385	9.78	0.011	0.28
GP08Y	2.993 - 10.474	76.02 - 266.04	øA - 0.188	øA - 4.78	0.510	12.95	0.011	0.28

Metric sizes.

Table LIII Recommended Radius for Groove Dia.

Bore Di	ameter	Rmax.			
Inch	mm	Inch	mm		
< 9.842	< 250.0	0.008	0.2		
> 9.842	> 250.0	0.015	0.4		

Metric sizes.

Γ

Installation Recommendations, Turcite $^{\circledast}$ Slydring $^{\circledast}$ / Luytex $^{\circledast}$ Slydring $^{\circledast}$ for Rod Series No. GR0 (Old Series No. S34548, S34549 and S34550)

Figure 135 Installation Drawing

Table LIV	Groove	Dimensions
-----------	--------	------------

Series No.	Ro Diam	Rod Groove Diameter Diameter		Groove Width		Radial Clearance		
	Inch	mm	Inch	mm	Inch	mm	Inch	mm
	ø B	ø B	ø E h8	ø E h8	G +0.010	G +0.25	D/2 _{max.}	D/2 _{max.}
GR02X	0.123 - 1.498	3.12 - 38.05	øB + 0.064	øB + 1.63	0.135	3.43	0.007	0.18
GR04X	0.123 - 1.498	3.12 - 38.05	øB + 0.064	øB + 1.63	0.260	6.60	0.007	0.18
GR06X	0.123 - 1.498	3.12 - 38.05	øB + 0.064	øB + 1.63	0.385	9.78	0.007	0.18
GR08X	0.123 - 1.498	3.12 - 38.05	øB + 0.064	øB + 1.63	0.510	12.95	0.007	0.18
GR02W	0.373 - 4.497	9.47 - 114.22	øB + 0.126	øB + 3.20	0.135	3.43	0.009	0.23
GR04W	0.373 - 4.497	9.47 - 114.22	øB + 0.126	øB + 3.20	0.260	6.60	0.009	0.23
GR06W	0.373 - 4.497	9.47 - 114.22	øB + 0.126	øB + 3.20	0.385	9.78	0.009	0.23
GR08W	0.373 - 4.497	9.47 - 114.22	øB + 0.126	øB + 3.20	0.510	12.95	0.009	0.23
GR02Y	2.997 - 9.997	76.12 - 253.92	øB + 0.188	øB + 4.78	0.135	3.43	0.011	0.28
GR04Y	2.997 - 9.997	76.12 - 253.92	øB + 0.188	øB + 4.78	0.260	6.60	0.011	0.28
GR06Y	2.997 - 9.997	76.12 - 253.92	øB + 0.188	øB + 4.78	0.385	9.78	0.011	0.28
GR08Y	2.997 - 9.997	76.12 - 253.92	øB + 0.188	øB + 4.78	0.510	12.95	0.011	0.28

Metric sizes.

Γ

Table LV Recommended Radius for Groove Dia.

Bore Di	ameter	Rm	ax.
Inch	mm	Inch	mm
< 9.842	< 250.0	0.008	0.2
> 9.842	> 250.0	0.015	0.4

Ordering example - Piston

Slydring[®] for bore diameter A: 91.90 mm (3.618 inch) Dash No. per MIL-G-5514F: -339 Series GP0 from Table LII, page 115

Groove width:	9.78 mm (0.385 inch)
Groove depth:	2.39 mm (0.094 inch)
Material:	Turcon [®] T10

see Table I, page 12.

 * Turcon[®] T11, used in North America is equivalent to Turcon[®] T10

Ordering example - Rod

Slydring[®] for rod diameter B: 38.05 mm (1.498 inch) Dash No. per MIL-G-5514F: -325 Series GR0 from Table LIV, page 116

Groove	width:
Groove	depth:

6.60 mm (0.260 inch) 1.60 mm (0.063 inch)

Material:

Turcon[®] T29 see Table I, page 12

Note: Slydring[®] in material Luytex[®] and Zurcon[®] will use special Part No. due to tolerance and temperature variations. For other sizes, (width/depth) and special Part No. consult your Shamban sales engineer.

■ Turcon[®] Wedgpak[®] Face Seal

Description

The Turcon[®] Wedgpak[®] Face Seal is an adaptation of the traditional Wedgpak[®] design to maximize performance in face seal applications. It utilizes a triangular shaped Turcon[®] delta ring energized by a uniquely shaped elastomer designed to maximize extrusion protection under abnormal clearance gap conditions.

Figure 136 Turcon[®] Wedgpak[®] Face Seal

Method of Operation

It is typical for face seal applications to experience impulse pressures and therefore abnormally high "breathing" conditions in mating hardware. The Turcon[®] delta ring uses the full depth of the seal groove to optimize the amount of material available and maximize extrusion protection under worst case conditions. The special shaped geometry of the elastomer provides a preload under low pressure conditions, and constantly forces the Turcon[®] delta ring up against the clearance gap to prevent extrusion of the elastomer.

Advantages

- Excellent static sealing effect
- Good extrusion protection
- Easy installation

Technical Data

Operating pressure: 35 MPa (5000 psi)

	Speed:	Not applicable
--	--------	----------------

Temperature range: -54°C to +200°C
(-65°F to +390°F)
(depending on elastomer material

Clearance: Can exceed recommendations of MIL-G-5514F/AS4716 dependent upon the combination of pressures and clearance gaps Media:

Mineral oil-based hydraulic fluids, flame retardant hydraulic fluids, environmentally safe hydraulic fluids (bio-oils), Phosphate Ester, water and others, depending on the elastomer material (see Table IV, page 16)

Materials

See Table I, page 12 and Table III, page 15.

Series

The Wedgpak[®] Face Seal follows the series as described in following pages. Special sizes are available upon request. Please contact your Shamban sales engineer.

Figure 137 Relationship Between the Profile Cross-Section

Case Story

Figure 138 Engine Driven Hydraulic Pump Flange Seal Retrofit

Problem

Operators of wide bodied aircraft have experienced leakage of engine driven pumps, between adaptor block and housing.

Solution

 $\mathsf{Turcon}^{\circledast}$ $\mathsf{Wedgpak}^{\circledast}$ Face Seal eliminated leakage failures.

Installation Turcon $^{ extsf{B}}$ Wedgpak $^{ extsf{B}}$ Face Seal, Series No. DW00 (Old Series No. S38000), Internal

Figure	139	Installation	Drawing
--------	-----	--------------	---------

igui	e 137	msiund		ruwing			
Tabl	e LVI	Groov	/e Din	nension	S		
	¢ D	ø A Dig	Groov	G e Width.	Groove	Depth	R
Dash	Inch	mm	Inch	mm	Inch	mm	Inch
INO	+0.000 -0.005	+0.00 -0.13	+0.010 -0.000	+0.25 -0.00	±0.001	±0.03	/ mm
008 009 010	0.316 0.348 0.379	8.03 8.94 9.63					
011 012 013 014 015	0.441 0.504 0.566 0.629 0.691	11.20 12.80 14.38 15.98 17.55					
016 017 018 019 020	0.754 0.816 0.879 0.941 1.004	19.15 20.73 22.33 23.90 25.50	0.094	2.39	0.057	1.45	0.005
021 022 023 024 025	1.066 1.129 1.191 1.254 1.316	27.08 28.68 30.25 31.85 33.43					0.015
026 027 028	1.379 1.441 1.504	35.03 36.60 38.20					0.38
110 111 112 113 114 115	0.568 0.630 0.693 0.755 0.818 0.880	14.43 16.00 17.60 19.18 20.78 22.35	0.141	3.58	0.090	2.29	
116 117 118 119 120	0.943 1.005 1.068 1.130 1.193	23.95 25.53 27.13 28.70 30.30					

	ø A Dia.		Groov	G e Width.	Groove	e Depth	R
Dash	Inch	mm	Inch	mm	Inch	mm	Inch
NO	+0.000 -0.005	+0.00 -0.13	+0.010 -0.000	+0.25 -0.00	±0.001	±0.03	/ mm
121 122 123 124 125 126 127 128	1.255 1.318 1.380 1.443 1.505 1.568 1.630 1.693	31.12 33.48 35.05 36.65 38.23 39.83 41.40 43.00	0.141	3.58	0.090	2.29	0.005 0.015
129 130 131 132 133 134 135	1.755 1.818 1.880 1.943 2.005 2.068 2.131	44.58 46.18 47.75 49.35 50.83 52.53 54.13					0.13 0.38
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226	1.012 1.074 1.137 1.199 1.262 1.324 1.387 1.449 1.512 1.574 1.637 1.699 1.762 1.887 2.012 2.137 2.262	25.70 27.28 28.88 30.45 32.05 33.63 35.23 36.80 38.40 39.98 41.58 43.15 44.75 47.93 51.10 54.28 57.45	0.188	4.78	0.122	3.10	0.010 0.025 0.25 0.63

	, C	ø A Dia.	G Groove Width.		L Groove Depth		R
Dash No	Inch	mm	Inch	mm	Inch	mm	Inch
	+0.000 -0.005	+0.00 -0.13	+0.010 -0.000	+0.25 -0.00	±0.001	±0.03	/ mm
227 228 229 230 231	2.387 2.512 2.637 2.762 2.887	60.63 63.80 66.98 70.15 73.33					
232 233 234 235	3.012 3.137 3.262 3.387	76.50 79.68 82.85 86.03					0.010
236 237 238 239 240	3.512 3.637 3.762 3.887 4.012	89.20 89.84 95.55 98.73 101.90	0.188	4.76	0.122	3.10	0.025 0.25 0.63
241 242 243 244 245	4.137 4.262 4.387 4.512 4.637	105.08 108.25 111.43 114.60 117.78					
246 247	4.762 4.887	120.95 124.13					
325 326 327 328 329 330	1.895 2.020 2.145 2.270 2.395 2.520	48.13 51.31 54.48 57.66 60.83 64.01					
331 332 333 334 335	2.645 2.770 2.895 3.020 3.145	67.18 70.36 73.53 76.71 79.88					0.020
336 337 338 339 340	3.270 3.395 3.520 3.645 3.770	83.06 86.23 89.41 92.58 95.76	0.281	7.14	0.187	4.75	0.035 0.51 0.89
341 342 343 344 345	3.895 4.020 4.145 4.270 4.395	98.93 102.11 105.28 108.46 111.63					
346 347 348 349	4.520 4.645 4.770 4.895	114.81 117.98 121.16 124.33					

Ordering Example

Wedgpak[®] Face Seal for internal use Series No. DW00

Dash No: 115

Material: T29 EH

<u>Order No.</u> <u>DW00</u> <u>0</u> <u>B</u> <u>115</u> <u>A</u> <u>T29</u> <u>EH</u>
Series No.
<u>0 = Standard</u>
Groove standard
Shamban gland specification
Seal part includes Certificate of conformance (C.C.)
Turcon [®] material code
Elastomer material code

Installation Turcon $^{\circ}$ Wedgpak $^{\circ}$ Face Seal, Series No. DW01 (Old Series No. S38001), External

Figure	140	Installation	Drawing
--------	-----	--------------	---------

Table	e LVII	Groo	ve l	Dimensio	ns
	øB	ø B		G	

		C C	ø B Dia.	Groove Width.		Groove	R	
Dash		Inch	mm	Inch	mm	Inch	mm	Inch
	140	+0.000 -0.005	+0.00 -0.13	+0.010 -0.000	+0.25 -0.00	±0.001	±0.03	/ mm
	008 009 010	0.176 0.208 0.239	4.47 5.28 6.07					
	011 012 013 014 015	0.301 0.364 0.426 0.489 0.551	7.65 9.25 10.82 12.42 14.00					
	016 017 018 019 020	0.614 0.676 0.739 0.801 0.864	15.60 17.17 18.77 20.35 21.95	0.094	2.39	0.057	1.45	0.005
	021 022 023 024 025	0.926 0.989 1.051 1.114 1.176	23.52 25.12 26.70 28.30 29.87					0.015
	026 027 028	1.239 1.301 1.364	31.47 33.05 34.65					0.38
	110 111 112 113 114 115	0.362 0.424 0.487 0.549 0.612 0.674	9.19 10.77 12.37 13.94 15.54 17.12	0.141	3.58	0.090	2.29	
	116 117 118 119 120	0.737 0.799 0.862 0.924 0.987	18.72 20.29 21.89 23.47 25.07					

	ø B Dia.		G Groove Width.		L Groove Depth		R	
Dash No	Inch	mm	Inch	mm	Inch	mm	Inch	
110	+0.000 -0.005	+0.00 -0.13	+0.010 -0.000	+0.25 -0.00	±0.001	±0.03	/ mm	
121 122 123 124 125	1.049 1.112 1.174 1.237 1.299	26.64 28.24 29.82 31.42 32.99					0.005	
126 127 128 129 130	1.362 1.424 1.487 1.549 1.612	34.59 36.17 37.77 39.34 40.94	0.141	3.58	0.090	2.29	0.015 0.13	
131 132 133 134 135	1.674 1.737 1.799 1.862 1.925	42.52 44.12 45.69 47.29 48.90					0.38	
210 211 212 213 214 215	0.734 0.796 0.859 0.921 0.984 1.046	18.64 20.22 21.82 23.39 24.99 26.57					0.010	
216 217 218 219 220	1.109 1.171 1.234 1.296 1.359	28.17 29.74 31.34 32.92 34.52	0.188	4.76	0.122	3.10	0.010	
221 222 223 224 225	1.421 1.484 1.609 1.734 1.859	36.09 37.69 40.87 44.04 47.22					0.63	
226	1 98/	50.30						

	, C	ø B Dia.	G Groove Width.		Width. Groove Depth		R
Dash No	Inch	mm	Inch	mm	Inch	mm	Inch
1.10	+0.000 -0.005	+0.00 -0.13	+0.010 -0.000	+0.25 -0.00	±0.001	±0.03	/ mm
227 228 229 230 231 232	2.109 2.234 2.359 2.484 2.609 2.734	53.57 56.74 59.92 63.09 66.27 69.44					
233 234 235	2.859 2.984 3.109	72.62 75.79 78.97					0.010
236 237 238 239 240	3.234 3.359 3.484 3.609 3.734	82.14 85.32 88.49 91.67 94.84	0.188	4.76	0.122	3.10	0.025 0.25 0.63
241 242 243 244 245	3.859 3.984 4.109 4.234 4.359	98.02 101.19 104.37 107.54 110.72					
246 247	4.484 4.609	113.89 117.07					
325 326 327 328 329 330	1.475 1.600 1.725 1.850 1.975 2.100	37.47 40.64 43.82 46.99 50.17 53.34					
331 332 333 334 335	2.225 2.350 2.475 2.600 2.725	56.52 59.69 62.87 66.04 69.22					0.020
336 337 338 339 340	2.850 2.975 3.100 3.225 3.350	72.39 75.57 78.74 81.92 85.09	0.281	7.14	0.187	4.75	0.035 0.51 0.89
341 342 343 344 345	3.475 3.600 3.725 3.850 3.975	88.27 91.44 94.62 97.79 100.97					
346 347 348 349	4.100 4.225 4.350 4.475	104.14 107.32 110.49 113.67					

Metric sizes.

Ordering Example

Wedgpak[®] Face Seal for external use Series No. DW01

Dash No: 236

Material: T05 NG

<u>Order No.</u> <u>DW01</u> <u>0</u> <u>B</u> <u>236</u> <u>A</u> <u>T05</u> <u>NG</u>							
Series No.							
<u>0 = Standard</u>							
Groove standard							
Shamban gland specification							
Seal part includes							
Certificate of conformance (C.C.)							
Turcon [®] material code							
Elastomer material code							

Edition April 2004

Г

Installation Instructions

General Comments

After choosing the right seal design, the second most important issue is to install the seal without damaging it.

The following hardware characteristics should be considered at an early hardware design stage in order to ensure damage free installation of seals.

Figure 141 Methods of Hardware Design to Prevent Seal Damage

- The installation path should be kept free of nicks, burrs, scratches, or any sharp edge that could damage the seal.
- Any tool used to install seals should be free of sharp edges. Screwdrivers are especially notorious for damaging sealing lips and should not be used to handle the seals.
- Tools made out of hard plasticlike Delrin or Nylon are preferred.
- In situations where heat is required to soften and expand the Turcon[®]-seal components, submerse them for a few minutes in hot oil or water (200 °F). Heat should not be required to install elastomer components. Be sure to use compatible lubricant when installing elastomer components.
- Application of a lubricant to surfaces of the seal and hardware reduces the force required to push the seal into a difficult gland such as a solid O-Ring groove.
- Piston seals may be sized by freezing them prior to installing the piston in the bore. A typical situation where this is an advantage is on spool valve pistons.

- A lead-in chamfer on the end of the rod or bore helps during installation. The proper chamfer dimensions are given in the tables found later in this section. This is especially important where seals are to be installed facefirst towards the seal-lip into the gland.
- When seals must be installed across ports, the edges of the ports should be smooth and rounded.
- Design splines or keyways to fall on a smaller diameter than the sealing surface or use a protective sleeve to cover them during installation as illustrated in Fig. 141.
- Avoid glands which require bending the seals during installation. When seals must be stretched or compressed into a difficult gland, be sure to use the recommended tooling described in Fig. 142-144 resize the seals.
- Do not sideload the seals any more than is necessary. Avoid gland situations where a heavy rod or piston bears against one side of the seal.

If you feel that your application poses a special problem with installation, your Shamban sales engineer will be pleased to demonstrate installation of seals and scrapers.

Procedure for installation of piston seals

Figure 142 Expanding the Turcon[®] Sealing Element Using an Expanding Sleeve over the Installation Sleeve

Figure 143 Sealing Element after Snapping into the Groove

Figure 144 Sizing the Sealing Element with a Sizing Sleeve

For sizes where the Turcon[®] seal ring is expanded more than 15% (10% for the high filled materials Turcon[®] T10 and Turcon[®] T29), a split groove is necessary.

Figure 145 Installation in a Split Groove

Figure 146 Fitting the Seal Ring onto the O-Ring in the Groove

Figure 147 Sizing of the Installed Seal

Procedure for installation of rod seals

- Place the elastomer part into the groove
- Compress the Turcon[®] part into a kidney shape. The seal must have no sharp bends (Figure 148)! Use a rounded object like a pen to compress the Turcon[®] part.

Figure 148 Kidney-Shaped Deformation of the Seal Ring

Figure 149 Inserting the Seal Ring into the Closed Groove

- After placing into the groove, form the seal into a ring again by smoothing out the I.D. by hand.
- Finally, size the seal ring using a mandrel which should have a chamfer of 10° to 15° over a length of approx. 30 mm. (Figure 150).

The sizing mandrel should be made from a polymer material (e.g. polyamide) with good sliding characteristics and high surface quality in order to avoid damage to the seals.

The piston rod itself can also be used for calibration, provided it has a sufficiently long lead-in chamfer.

Figure 150 Sizing of the Installed Seal

Note! Should you encounter problems with installation even after following the recommendations in this catalog, additional information is available.

Quality Criteria

The cost-effective use of seals and bearings is highly influenced by the quality criteria applied in production. Seals and bearings manufactured by Shamban are continuously monitored according to strict quality standards from material acquisition through to delivery.

Certification of our production plants in accordance with international standards EN ISO 9000 meets the specific requirements for quality control and management of purchasing, production and marketing functions.

Our quality policy is consistently controlled by strict procedures and guidelines which are implemented within all strategic areas of the company.

All testing of materials and products is performed in accordance with accepted test standards and specifications, e.g. random sample testing in accordance

with DIN ISO 2859 part 1/ANSI/ASQC Z 1.4-1993/ MIL-STD- 105 E. Inspection specifications correspond to standards applicable to individual product groups (e.g. for O-Rings: ISO 3601/DIN 3771).

Our sealing materials are produced free of chlorofluorinated hydrocarbons and carcinogenic elements.

For Seals and Bearings used in the Aerospace Industry, an "A" must be specified in the 10th digit. In special numbers, the "A" will be in the 5th digit of the number. Customer-specific demands are indicated and monitored with other characters in those positions.

Certificates of Approval

All manufacturing companies have ISO 9001/9002 certification and all marketing companies are certified or will be in the near future.

Storage

(The notes in *italics* only apply to elastomeric sealing materials).

Seals and bearings are often stored as spare parts for prolonged periods. With a few basic simple precautions, the shelf life of these products can be considerably lengthened.

Seals and bearings should be stored where they are safe from damage by external influences. Deformation, in particular, should be avoided during storage.

Under the influence of various external factors e.g. heat, moisture, light, oxygen, ozone and as a result of contact with liquid media, the properties of certain materials may change. For example, deformation, ageing and weathering can cause deterioration of the original mechanical and physical properties, depending on the material and shape of the parts.

Fundamental instructions on storage, cleaning and maintenance of elastomer seal elements are described in international standards, such as:

Storage of rubber products: DIN 7716/BS 3F68: 1977

Maximum age limitation:

New seal storage spec.: ARP 5316 MIL-HDBK-695C (Pending on cancellation) MIL-STD-1523A (Cancelled) DIN 9088

The individual guidelines give several recommendations for the shelf life of elastomers, depending on the material classes.

The following guidelines should be observed to maintain the optimum physical and chemical values of the parts:

Heat

The ideal temperature for storage is between $+5^{\circ}C/41^{\circ}F$ and $+25^{\circ}C/77^{\circ}F$. Direct contact with heaters should be avoided.

Moisture

Parts must be stored dry under normal atmospheric conditions (65% rel. moisture ±10).

Light

To ensure that the properties of the product are maintained, elastomer seals should be stored to avoid exposure to ultra violet or neon light.

Oxygen

To protect elastomers from oxygen, they should be kept in the original packaging or in airtight containers.

Weathering

To protect them against damage, seals and bearings should be kept in the original sealed packaging.

Ozone

Destruction of certain elastomeric sealing materials due to ozone can be caused by the following machines and equipment:

- Mercury discharge lamps
- High voltage equipment
- Electric motors
- Electric spark sources or discharges

Customer Approvals

A Abex/Parker/NWL, Control Systems ABS AEG AERO VODOCHODY, a.s. Aerojet Strategic Propulsion Company Aerospatiale Airesearch Airlines (all major airlines) Airscrew Howden Allied Signal/Bendix Engine Controls QP2000 Allied Signal/Bendix Wheels & Brakes QP318 Allison Gas Turbine Alresearch MIL-I-45208A Alvis Aerospace & Transmission Amsco Anchor Darling Valve Company ANPK "MIG" **APPH Precision Hydraulics** Argo-Tech Arkwin Asdor Filters Agusta

- B Battle of Britain Flight
 BF Goodritch
 Boeing Company D1-9000
 British Aerospace BAe/AG/QC/SC1, Part 3b
 British Aerospace
 BW/IP International
- C Cadillac Gage
 Coltax Aerospace
 Compania Espanola de Sistemas Aeronauticas,S.A. (CESA)
 Construcciones Aeronauticas, S.A. (CASA)

DAF Special Products B.V.
 Daimler Benz Aerospace Airbus GmbH
 DLA-DCAS
 Douglas Aircraft
 Dowty Aerospace
 Dräger Hispania S.A.
 Dunlop

E EDO

Emco Fluid Systems E.N. Santa Barbara Energia Ericsson Saab Avionics

- Fairey Hydraulics
 Fairey Microfiltrex
 Fimac
 FFV Aviocomp
 FFV Aerotech
 Flight Refuelling
 FLS Aerospace
- G Gamesa Aeronautica Garrett GmbH GEC Marconi General Dynamics - Top Gun Supplier General Electric Aircraft Engine S1000 Grumman MIL-I-45208A (QES0002 - Part I)

H R Textron

Hamilton Standard Hispano-Suiza Hollandse Signaalapparaten B.V. Honeywell Space Systems Hunting Aviation Hughes Aircraft Hydro-Air Hymatic Engineering Co. Ltd

- Israel Aircraft/Astra Jet
- J JIHLAVAN, a.s. JIHOSTROJ, a.s.
- K Kaman Aerospace MIL-I-45208A Kombinat "PZL-HYDRAL SA Kværner
- L Liebherr Aerospace Lindenberg GmbH (LLI) LTV Lucas Aerospace (all)

M.L. Aviation

- Magnaghi Martin Baker Aircraft Ltd. McDonnell Douglas Meggitt Oxygen Systems Messier-Bugatti Messier-Dowty Microtecnica MOOG Controls Moscow helicopter plant "Mil"
- Normalair-Garrett Ltd. Nuclear Assurance
- O Oma
- Parker Hannifin
 Pattonair
 PHD
 Pilatus

R Raytheon

Remco Hydraulics Rockwell International ST0802GT0002, 20C Rodina Rolls Royce (ALL) Rubin

S SABCA

Sargent Controls MIL-I-45208A Satair SHL Short Brothers Sundstrand Swedish Space Agency Saab Military Aircraft Saab Aircraft

T Teijin Seiki

V/W Vickers

Volvo Aero Support Volvo Flygmotor Voskhod Westlands (ALL) Woodward Governor

Z Z.F.

ZAKLAD LOTNICZY "PZL-MIELEC" Sp.z.o.o. Zvezda

Technical Questionnaire

We would be pleased to send you a technical proposal/quotation to your sealing or bearing application upon receipt of this questionnaire. (Look for address and fax number on the back page of the catalogue).

Name:	Date:
Division:	
Company:	Technical proposal:
Address:	Quotation for pieces
Postal Code:	, uniour obuge.
Telephone:	Others:
Telefax:	

Please provide relevant dimensions to your application on the drawing shown below, or send us a copy of your hardware drawing.

Service Conditions and Hardware:

Type of component:		Short description of your application or
Component description:		objectives:
Pressure range:		
Operating pressure:		
Temperature range:		
Operating temperature:		
Speed max:	Operating speed:	
Media:		
Movement:		
oscillatory	reciprocating	
rotation	static	
Number of cycles/frequency	/:	
Maximum stroke:		
Material (housing/countersu	urface):	
Surface finish:		
Service life required:		

For further information:

www.busakshamban.com

www.trelleborg.com