

#### **National O-Ring Design Guide**

What is an O-Ring? An O-Ring is a torus or donut-shaped part of circular cross section made of an elastomeric (rubber) material. O-Rings function as low-cost, compact, reliable and forgiving sealing devices for liquids and gases. Because of the resilience of the elastomer, O-Rings absorb tolerance stack-up on the metal parts they seal.

SQUEEZE NO PRESSURE PRESSURF: PRESSURE APPLIED PRESSURE PRESSURE REVERSED Normal circular cross section of O-Ring is squeezed when properly installed in its gland. Pressure forces O-Ring to low-pressure side of gland.

How do they seal? An O-Ring blocks the gap between two closely spaced surfaces by its memory or tendency to return to original shape when deformed. Normally, the O-Ring is installed in a gland that consists of a rectangular groove and a facing surface. By design, the O-Ring is squeezed into the gland during installation and the resulting force provides sealing at low pressure. As pressure is increased, it is transmitted through the O-Ring to mating surfaces thus augmenting seal effectiveness.

**Basic types** All O-Ring applications can be classified into two basic types:

dynamic, where there is relative motion between the parts of the gland (a reciprocating rod or piston seal), and



Dynamic seals for reciprocating service are all variations on the piston and rod seal configurations. For rotating applications (usually limited to less than 180 surface ft/min), the groove is usually located in the stationary housing, similar to the rod seal.

static, where the two parts of the gland do not move relative to each other (such as a pipe flange).

CAP SEAL PLUG SEAL





Static seals can take many forms. Note that gap in flange and face seals can be essentially zero. permitting sealing of very high pressures.

O-Ring design parameters The proper design for the application of an O-Ring seal falls naturally into two main areas, dimensions and material selection.

Dimensions of both the O-Ring and the gland in which it is installed depend on:

- The size and shape of the parts to be sealed
- The pressure to be contained
- The type of motion, if any

Material selection, that is, the choice of the specific National O-Ring compound. depends on:

- The fluids to be sealed
- The temperature of the application
- The pressure to be contained
- The type of motion, if any
- Material specifications, if any

Design steps The design of an O-Ring application falls logically into seven basic steps:

- I. Select the elastomer
- 2. Select a standard size
- 3. Determine the maximum gap
- 4. Specify gland dimensions
- 5. Check for installation
- 6. Select the specific National compound
- 7. Select the National part number

Paragraphs dealing with each of these design steps are called out by a color bar to distinguish them from those containing background information. The second time you use this guide, you should be able to follow only the color-coded sections.

Elastomer hardness National supplies O-Rings in a wide variety of different compounds. These are all members of 13 general families of elastomers. Research is constantly directed toward improving National compounds to meet increasingly rigorous application demands.

The principal difference between members of the same elastomer family is the hardness as measured by the Shore A durometer; the higher the durometer number, the harder the compound. (Elastomer hardness measurement is similar to the Rockwell and Brinnell techniques for metals.)

For the great majority of O-Ring applications, a hardness of 70 durometer is optimal. Softer O-Rings with hardness from 40 to 60 are often specified for low pressure or vacuum applications and offer lower breakout friction. Hardnesses of 80 or 90 are specified for their greater abrasion resistance and resistance to extrusion at high pressures. Because the harder O-Rings do not conform as well to surface irregularities, they tend to "weep" or leak slightly at low pressure.

Elastomer families National O-Rings are produced in a variety of different compounds. Each compound is based on one of the elastomer families and is designed to optimize those properties important for O-Ring sealing service. Hardness is the primary difference between O-Ring compounds that are based on the same elastomer.

The following is a brief introduction to the characteristic properties of the various families. For more detailed information, see the Elastomer Compatibility Guide on page 6 and the Fluid Compatibility Table on page 15.

#### NITRILE (Buna N)

Compounds of these materials are "standard" for most O-Ring service. Nitrile materials perform satisfactorily in a wide variety of fluids including alkaline and salt solutions, petroleum, lubricating, and hydraulic oils, gasoline, alcohol and water.

#### **ETHYLENE-PROPYLENE**

Ethylene-propylene compounds have excellent resistance to water, steam, acid, ketones, phosphate esters, automotive brake fluids and ozone. They are not recommended for petroleum oils.

#### **NEOPRENE** (Chloroprene)

Good ozone and weather resistance plus excellent resistance to refrigeration fluids are

characteristics of the neoprene compounds. They are generally unsatisfactory for use with aromatic hydrocarbons, chlorinated solvents and ketones.

#### FLUOROCARBON (Viton\*, Fluorel\*)

The fluorocarbon elastomers have inherent compatibility with a wide range of chemicals and provide high temperature stability. They are suitable for use with petroleum oils, silicone greases and halogenated hydrocarbons, but should not be used with ketones or anhydrous ammonia.

#### SILICONE

Excellent resistance to extremes of temperature is the outstanding characteristic of silicone compounds. Relatively weak physical strength and abrasion resistance usually limit silicones to static service.

#### **FLUOROSILICONE**

These materials combine the good extreme-temperature properties of silicone with resistance to petroleum oils and hydrocarbon fuels.

#### STYRENE-BUTADIENE (SBR or GRS)

These materials were originally developed during World War II as a substitute for natural rubber. They are used mostly for tires. In O-Rings, they are recommended for use with water, alcohol, silicone oils and automotive brake fluids.

#### POLYACRYLATE

Outstanding resistance to petroleum fuels and oils is characteristic of these materials. They are also resistant to sunlight and ozone. Polyacrylate is widely used in automotive automatic transmissions and power steering mechanisms.

#### **POLYURETHANE**

These materials exhibit outstanding tensile strength and very good abrasion resistance. Resistance to petroleum oils, hydrocarbon fuels, oxygen and ozone is good. Polyurethanes are not recommended for acids, ketones, chlorinated hydrocarbons and water.

#### BUTYL

Butyls are all-petroleum products with excellent resistance to gas permeation. They are used in vacuum applications and, as ethylenepropylene, are recommended for use with phosphate esters. They are also recommended for ketones and silicone fluids, but not for petroleum oils or fuels.

#### POLYSULFIDE (Thiokol\*)

These materials have outstanding resistance to oils, greases and solvents and remain quite flexible at low temperatures. Heat resistance and mechanical strength are not outstanding. Resistance to ozone, oxygen and weathering are good.

#### **CHLOROSULFONATED** POLYETHYLENE (Hypalon\*)

These materials have excellent resistance to ozone, oxidents, heat and weathering. Resistance to petroleum base fluids is moderate and mechanical properties are generally lower than other elastomers.

#### EPICHLOROHYDRIN (Hydrin\*, Hercolor\*)

These relatively new materials have excellent resistance to hydrocarbon fuels and oils, vegetable oils and ozone. High-temperature resistance is also good for limited term exposure.

\*Trademarks:

Hypalon, Viton - E. I. duPont Fluorel - 3M Co. Thiokol - Thiokol Chemical Co. Hercolor - Hercules Chemical Co.

Hydrin - B.F. Goodrich

#### STEP 1. SELECT THE ELASTOMER

Elastomer selection Picking the proper elastomer for a specific O-Ring application is largely a matter of making the best possible match between elastomer capabilities and application requirements. Sometimes compromises must be made, but usually it is possible to find a material that meets all the specifications.

In using the following Elastomer Compatibility Guide, it is usually best to enter the table through the most critical requirement such as temperature or fluid compatibility. Then, after finding several possible families. the choice can be narrowed by checking the other parameters for each.

The Compatibility Guide is purposely brief in order to show as many parameters as possible for quick comparison. A complete table of fluid compatibilities, showing recommended elastomers for some 500 fluids, can be found on page 15.

#### STEP 2. SELECT A STANDARD SIZE

O-Ring dimensions An O-Ring is defined dimensionally by its cross-section diameter and inside diameter. National O-Rings are made in five standard cross sections with nominal inside diameters ranging from 1/32 to 26 inches (0.79 to 660 mm). For special applications, National can provide O-Rings to your particular size requirements. The full list



9.1 O-Ring cross section diameter and inside diameter are shown in either decimal inches or in millimeters. Maximum permissible flash dimensions apply regardless of size.

## **O-RING SEAL ELASTOMER CAPABILITY GUIDE**

| NOMENCLATURE                        | NITRILE<br>(BUNAN) | ETHYLENE-<br>Propylene | NEOPRENE<br>(CHLOROPRENE) | FLUORO-<br>Carbon<br>(Viton<br>Fluorel) | SILICONE    |
|-------------------------------------|--------------------|------------------------|---------------------------|-----------------------------------------|-------------|
| NATIONAL COMPOUND PREFIX            | B, C, D            | E                      | N                         | ٧                                       | S           |
| ASTM D2000 PREFIX                   | BG, BK, CH         | CA                     | BC, BE                    | НК                                      | FC, FE, GE  |
| ASTM D1418 DESIGNATION              | NBR                | EPDM, EPM              | CR                        | FKM                                     | PVMQ, VMQ   |
| GENERAL                             |                    |                        | 5000 C                    |                                         |             |
| HARDNESS RANGE, °SHORE A            | 40-90              | 50-90                  | 40-80                     | 70-90                                   | 40-80       |
| RELATIVE O-RING COST                | LOW                | LOW                    | LOW/MOD.                  | MOD./HIGH                               | MODERATE    |
| CONTINUOUS HIGH TEMP. LIMIT         | 257°F,125°C        | 302°F,150°C            | 284°F,140°C               | 437°F,225°C                             | 482°F,250°C |
| LOW TEMPERATURE CAPABILITY          | -67°F,-55°C        | -67°F,-55°C            | -67°F,-55°C               | -40°F,-40°C                             | -103°F,75°C |
| DYNAMIC SERVICE/ABRASION RESISTANCE | EXCELLENT          | VERY GOOD              | VERY GOOD                 | VERY GOOD                               | POOR        |
| COMPRESSION SET RESISTANCE          | VERY GOOD          | VERY GOOD              | GOOD                      | VERY GOOD                               | EXCELLENT   |
| FLUID COMPATIBILITY                 |                    |                        |                           |                                         |             |
| ACID, INORGANIC                     | FAIR               | GOOD                   | FAIR/GOOD                 | EXCELLENT                               | GOOD        |
| ACID, ORGANIC                       | GOOD               | VERY GOOD              | GOOD                      | GOOD                                    | EXCELLENT   |
| AGING, (OXYGEN, OZONE, WEATHER)     | FAIR/POOR          | VERY GOOD              | GOOD                      | VERY GOOD                               | EXCELLENT   |
| AIR                                 | FAIR               | VERY GOOD              | GOOD                      | VERY GOOD                               | EXCELLENT   |
| ALCOHOLS                            | VERY GOOD          | EXCELLENT              | VERY GOOD                 | FAIR                                    | VERY GOOD   |
| ALDEHYDES                           | FAIR/POOR          | VERY GOOD              | FAIR/POOR                 | POOR                                    | GOOD        |
| ALKALIS                             | FAIR/GOOD          | EXCELLENT              | GOOD                      | GOOD                                    | VERY GOOD   |
| AMINES                              | POOR               | VERY GOOD              | VERY GOOD                 | POOR                                    | GOOD        |
| ANIMAL OILS                         | EXCELLENT          | GOOD                   | GOOD                      | VERY GOOD                               | GOOD        |
| ESTERS, ALKYL PHOSPHATE (SKYDROL)   | POOR               | EXCELLENT              | POOR                      | POOR                                    | GOOD        |
| ESTERS, ARYL PHOSPHATE              | FAIR/POOR          | EXCELLENT              | FAIR/POOR                 | EXCELLENT                               | GOOD        |
| ESTERS, SILICATE                    | GOOD               | POOR                   | FAIR                      | EXCELLENT                               | POOR        |
| ETHERS                              | POOR               | FAIR                   | POOR                      | POOR                                    | POOR        |
| HYDROCARBON FUELS, ALIPHATIC        | EXCELLENT          | POOR                   | FAIR                      | EXCELLENT                               | FAIR        |
| HYDROCARBON FUELS, AROMATIC         | GOOD               | POOR                   | FAIR/POOR                 | EXCELLENT                               | POOR        |
| HYDROCARBONS, HALOGENATED           | FAIR/POOR          | POOR                   | POOR                      | EXCELLENT                               | POOR        |
| HYDROCARBON OILS, HIGH ANILINE      | EXCELLENT          | POOR                   | GOOD                      | EXCELLENT                               | VERY GOOD   |
| HYDROCARBON OILS, LOW ANILINE       | VERY GOOD          | POOR                   | FAIR/POOR                 | EXCELLENT                               | FAIR        |
| IMPERMEABILITY TO GASES             | GOOD               | GOOD                   | GOOD                      | VERY GOOD                               | POOR        |
| KETONES                             | POOR               | EXCELLENT              | POOR                      | POOR                                    | POOR        |
| SILICONE OILS                       | EXCELLENT          | EXCELLENT              | EXCELLENT                 | EXCELLENT                               | GOOD        |
| VEGETABLE OILS                      | EXCELLENT          | GOOD                   | GOOD                      | EXCELLENT                               | EXCELLENT   |
| WATER/STEAM                         | GOOD               | EXCELLENT              | FAIR                      | FAIR                                    | FAIR        |

NOTE: Chart information is intended for use only in conjunction with text. Marginally compatible fluids or other severe service conditions will reduce recommended high temperature capability and compromise other elastomer properties.

| FLUORO-<br>SILICONE    | STYRENE-<br>BUTADIENE<br>(GRS) | POLY-<br>ACRYLATE      | POLY-<br>Urethane | BUTYL             | POLYSULFIDE<br>(THIOKOL) | CHLORO-<br>SULFONATED<br>POLYETHYLENE<br>(HYPÁLON) | EPICHLORO<br>Hydrin<br>(Hydrin) |
|------------------------|--------------------------------|------------------------|-------------------|-------------------|--------------------------|----------------------------------------------------|---------------------------------|
| F                      | G                              | L                      | U                 | J                 | К                        | Н                                                  | Z                               |
| FK                     | AA, BA                         | DF, DH                 | BG                | AA, BA            | AK, BK                   | CE                                                 | DK, DJ                          |
| FVMQ,                  | SBR                            | ACM                    | EU                | 1 IR              | Ţ                        | CSM                                                | EC0                             |
| 60-80                  | 40-80                          | 70-90                  | 60-90             | 50-70             | 50-80                    | 50-90                                              | 50-90                           |
| HIGH                   | LOW                            | MODERATE               | MODERATE          | MODERATE          | MODERATE                 | MODERATE                                           | MODERATE                        |
| 347°F,175°C            | 212°F,100°C                    | 347°F,175°C            | 212°F,100°C       | 212°F,100°C       | 212°F,100°C              | 257°F,125°C                                        | 257°F,125°C                     |
| -85°F,-65°C            | -67°F,-55°C                    | 0°F,-18°C              | -67°F,-55°C       | -67°F,-55°C       | -67°F,-55°C              | -67°F,-55°C                                        | -67°F,-55°C                     |
| POOR                   | EXCELLENT                      | GOOD                   | EXCELLENT         | GOOD              | FAIR/POOR                | POOR                                               | FAIR                            |
| VERY GOOD              | GOOD                           | FAIR                   | FAIR              | FAIR/GOOD         | FAIR                     | FAIR/POOR                                          | FAIR/GOOD                       |
| 0000                   | FAID (OOOD                     | DOOD                   | ponn              | 0000              | 2022                     | EVACULENCE.                                        |                                 |
| GOOD                   | FAIR/GOOD                      | POOR                   | POOR              | GOOD              | POOR                     | EXCELLENT                                          | FAIR                            |
| GOOD                   | GOOD                           | POOR                   | POOR              | VERY GOOD         | GOOD                     | GOOD                                               | FAIR                            |
| EXCELLENT<br>VERY GOOD | POOR<br>FAIR                   | EXCELLENT<br>VERY GOOD | EXCELLENT         | VERY GOOD<br>GOOD | EXCELLENT                | VERY GOOD                                          | VERY GOO                        |
| VERY GOOD              | VERY GOOD                      | POOR                   | GOOD<br>POOR      | VERY GOOD         | GOÖD<br>FAIR/GOOD        | EXCELLENT                                          | GOOD                            |
| POOR                   | FAIR/POOR                      | POOR                   | POOR              | GOOD              | FAIR/GOOD                | VERY GOOD<br>FAIR/GOOD                             | GOOD                            |
| GOOD                   | FAIR/GOOD                      | POOR                   | FAIR/GOOD         | EXCELLENT         | POOR                     | EXCELLENT                                          | POOR<br>FAIR                    |
| POOR                   | FAIR                           | POOR                   | POOR              | GOOD              | POOR                     | POOR                                               | POOR                            |
| EXCELLENT              | POOR                           | EXCELLENT              | GOOD              | GOOD              | POOR                     | GOOD                                               | GOOD                            |
| FAIR/POOR              | POOR                           | POOR                   | POOR              | VERY GOOD         | POOR                     | POOR                                               | POOR                            |
| VERY GOOD              | POOR                           | POOR                   | POOR              | EXCELLENT         | GOOD                     | FAIR                                               | POOR                            |
| VERY GOOD              | POOR                           | FAIR/POOR              | POOR              | POOR              | FAIR/POOR                | FAIR                                               | GOOD                            |
| FAIR                   | POOR                           | FAIR/POOR              | FAIR              | FAIR/POOR         | GOOD                     | POOR                                               | GOOD                            |
| EXCELLENT              | POOR                           | VERY GOOD              | GOOD              | POOR              | EXCELLENT                | FAIR                                               | VERY GOO                        |
| VERY GOOD              | POOR                           | POOR                   | FAIR/POOR         | POOR              | GOOD                     | FAIR/POOR                                          | VERY GOO                        |
| VERY GOOD              | POOR                           | FAIR/GOOD              | FAIR              | POOR              | GOOD                     | FAIR                                               | EXCELLEN                        |
| EXCELLENT              | POOR                           | EXCELLENT              | EXCELLENT         | POOR              | VERY GOOD                | EXCELLENT                                          | EXCELLEN                        |
| VERY GOOD              | POOR                           | EXCELLENT              | VERY GOOD         | POOR              | GOOD                     | VERY GOOD                                          | EXCELLEN                        |
| POOR                   | FAIR/GOOD                      | VERY GOOD              | FAIR              | EXCELLENT         | VERY GOOD                | VERY GOOD                                          | EXCELLEN                        |
| FAIR/POOR              | POOR                           | POOR                   | POOR              | EXCELLENT         | GOOD                     | FAIR                                               | FAIR                            |
| EXCELLENT              | EXCELLENT                      | EXCELLENT              | EXCELLENT         | EXCELLENT         | EXCELLENT                | EXCELLENT                                          | EXCELLEN                        |
| EXCELLENT              | POOR                           | GOOD                   | FAIR              | GOOD              | POOR                     | GOOD                                               | EXCELLEN                        |
| FÀIR                   | FAIR                           | POOR                   | POOR              | EXCELLENT         | FAIR                     | FAIR                                               | GOOD                            |

of standard sizes begins on page 28. The chart below indicates the size ranges by cross section:

Notice that there is considerable overlap in the ID ranges of the five cross sections. The following points should be considered in selection of the proper cross section:

- Use the largest cross section that will fit in the available space
- Larger cross sections are less subject to damage during installation or from abrasion and less subject to roll or twist
- Larger cross sections are less affected by intermittent high temperature
- Stretch and squeeze tolerance conditions are usually more favorable with larger cross sections.

the OD of the bottom of the groove should not exceed 2.10 inches).

Stretch in excess of 5%, combined with prolonged high temperature or a marginally compatible fluid, may cause deterioration. In addition, excessive stretch reduces the area of the cross section, and causes flattening of the normally circular cross section. Thus, excessive stretch can cause leakage.

Squeeze The tendency for an elastomer to return to its original shape when deformed is what makes an O-Ring an effective seal. As we shall see, the depth dimension of the O-Ring gland is smaller than the cross-section diameter of the O-Ring. Thus, when the seal is assembled, the O-Ring is squeezed or preloaded to provide the initial deformation vital to its sealing function.

#### SIZE RANGE

| AS-568     | Cross             | ID   | (in) | Cross<br>Section | ID mm |       |  |
|------------|-------------------|------|------|------------------|-------|-------|--|
| Series No. | Section Dia. (in) | Min. | Max. | Dia. (mm)        | Min.  | Max.  |  |
| 004 to 050 | .070              | 1/16 | 51/4 | 1.78             | 1.59  | 133.4 |  |
| 102 to 178 | .103              | 1/16 | 93/4 | 2.62             | 1.59  | 247.6 |  |
| 201 to 284 | .139              | 3/16 | 18   | 3.53             | 4.76  | 457.2 |  |
| 309 to 395 | .210              | 7/16 | 26   | 5.33             | 11.11 | 660.4 |  |
| 425 to 475 | .275              | 41/2 | 26   | 6.99             | 114.3 | 660.4 |  |

Stretch An elastomer is a material that will quickly recover its approximate original dimensions upon release after being stretched 100%. Therefore, an O-Ring can be stretched during installation to clear shoulders or other obstructions. However, once seated in the groove, stretch should not exceed 5% of the inside diameter (for example, for a 2-inch ID O-Ring,

The minimum amount of squeeze recommended, regardless of cross section, is 0.006 inch. The maximum squeeze usually recommended is 35% of the cross section diameter. Therefore, after determining gland dimensions in STEP 4, it is wise to check the "worst case" of tolerance build-up to see that squeeze will fall within the 0.006 inch to 35% limits.

#### STEP 3. DETERMINE MAXIMUM GAP

**Maximum gap** An O-Ring blocks the leak path or "gap" between two closely spaced surfaces. The size of the gap that can be sealed depends on the pressure to be contained and the hardness of the elastomer.

In general, the smaller the gap the higher the cost of machining the mating parts to obtain the required close tolerances. Therefore, to minimize costs, we recommend matching the size of the gap with O-Ring hardness and the

BORE
PISTON

AXX. GAP IF CONCENTRICITY
IS MAINTAINED BY BEARINGS

Maximum gap refers to the worst condition the O-Ring may be called upon to seal. Unless the concentricity of the piston or rod with the bore is assured by the design, maximum gap is equal to the difference between piston/rod diameter and bore diameter.

highest pressure the system will experience.

Maximum gap, sometimes called diametral clearance, is the difference between the ID of the bore and the OD of the piston or rod. It is based on the assumption that during operation the piston may be forced to one side of the bore, leaving all clearance on the opposite side. The O-Ring must be capable of sealing this gap. If the concentricity of the bore and piston is rigidly controlled by bearings or other means, the radial clearance may be taken as maximum gap.

To determine maximum gap, refer to the figure on page 10. Find your maximum system pressure on the left side of the chart and follow the pressure line to the colored 70 durometer hardness curve. Read straight down to find the maximum gap and apply this figure to the nominal bore/piston dimensions of your design.

For most applications, the 70 durometer material is most readily available and most economical. If other application requirements suggest a harder or softer material, follow the same procedure for the appropriate hardness. (Note: the 90 durometer curve is applicable where a 70 durometer O-Ring is used with a back-up ring.)



O-RING EXTRUDING

Extrusion failure of the O-Ring is a consequence of a pressure/gap intersection above the hardness curve on page 10. Such failure usually is



**EXTRUSION FAILURE** 

evidenced by slow but increasing leakage as tearing of the O-Ring surface progresses.



#### ISTEP 4. SPECIFY GLAND DIMENSIONS

Gland dimensions Now that we have established the dimensions of our cylinder and piston, it is an easy matter to determine the dimensions of the groove. The table below shows gland depth, width and radius for the five cross sections for both static and dynamic applications. Remember that to find the ID of a bore groove or the OD of a piston groove, we must add or subtract twice the gland depth to the basic dimensions. (Don't forget to check squeeze as described on page 8.)

Gland surface finish For static seals, the surface finish of the gland is not extremely critical. For the larger O-Ring cross sections, sur-

face finishes as rough as 128 microinches rms (3.2  $\mu$ m) may be tolerated if the surface scratches are parallel to the line of sealing. For all cross sections, finishes rougher than 32 microinches (0.8  $\mu$ m) with sharp surface scratches perpendicular to the line of the seal may cause leakage.

For dynamic seals, a surface finish of 16 microinches (0.4  $\mu$ m) is recommended, as rate of wear increases rapidly with rougher finishes. For minimum friction, the finish may be improved to about 5 microinches (0.13  $\mu$ m). Finishes smoother than 5 microinches should be avoided since they may be wiped dry as the rod extends, leaving no lubrication for the return stroke.

#### **GLAND DESIGN GUIDE**

|                         | INCHES              |                     |              |                     |                     | MIL          | LIMET        | ERS          |                     |              |
|-------------------------|---------------------|---------------------|--------------|---------------------|---------------------|--------------|--------------|--------------|---------------------|--------------|
| O-Ring Section Diameter | .070                | .103                | .139         | .210                | .275                | 1.78         | 2.62         | 3.53         | 5.33                | 6.99         |
| STATIC SEALING          |                     |                     |              |                     | 2                   |              | 2            |              |                     |              |
| A Gland Depth           | .048<br>.054        | .077<br>.083        | .109<br>.115 | .168<br>.176        | <u>.222</u><br>.232 | 1.22<br>1.37 | 1.96<br>2.11 | 2.77<br>2.92 | $\frac{4.27}{4.47}$ | 5.64<br>5.89 |
| B Groove Width*         | <u>.090</u><br>.100 | .140<br>.150        | .180<br>.190 | .280<br>.290        | .370<br>.380        | 2.29<br>2.54 | 3.56<br>3.81 | 4.57<br>4.83 | 7.11<br>7.37        | 9.40<br>9.65 |
| R Groove Radius (Max.)  | .015                | .020                | .025         | .035                | .050                | .38          | .51          | .64          | .89                 | 1.27         |
| DYNAMIC SEALING         |                     |                     |              |                     |                     |              |              |              |                     |              |
| A Gland Depth           | .055<br>.057        | .088                | .120<br>.124 | <u>.184</u><br>.188 | <u>.234</u><br>.240 | 1.40<br>1.45 | 2.24<br>2.29 | 3.05<br>3.15 | $\frac{4.67}{4.76}$ | 5.94<br>6.10 |
| B Groove Width *        | <u>.090</u><br>.100 | <u>.140</u><br>.150 | .180         | <u>.280</u><br>.290 | .370<br>.380        | 2.29<br>2.54 | 3.56<br>3.81 | 4.57<br>4.83 | $\frac{7.11}{7.37}$ | 9.40<br>9.65 |
| R Groove Radius (Max.)  | .015                | .020                | .025         | .035                | .050                | .38          | .51          | .64          | .89                 | 1.27         |

<sup>\*</sup>When using back-up rings, the groove width must be enlarged to accommodate the back-up ring or rings. Use the back-up ring manufacturer's recommendations for the groove width.



Gland dimensions must be added to or subtracted from appropriate part dimensions. See page 11 for details on gland surface finish.





If surface scratches (peaks and valleys) are sharp, elastomer may not be able to conform to the irregularities, permitting leakage. Sharp scratches also cause accelerated abrasion wear. Elastomer easily conforms to surface with smooth, rounded peaks and valleys.

#### STEP 5. CHECK FOR INSTALLATION

Assembly precautions The effectiveness of a well designed O-Ring seal can be destroyed by improper or careless assembly. Much of the responsibility for proper assembly falls on the designer as he provides a safe route for the O-Ring on its way to the groove. The O-Ring should not pass over sharp shoulders, keyways or threads that could cause cuts or abrasion. Chamfers should be provided on cylinder bores and piston rods so the ring will not be pinched during installation. Tape or sheet metal thimbles can be used during assembly to shield threads or sharp corners over which the O-Ring must pass.

Obviously, cleanliness is important during

assembly. Chips, grit and foreign matter could not only damage the O-Ring but could also contaminate the whole system. Lubrication often makes assembly easier. The system fluid usually makes the best assembly lubricant. Where it is not possible to use system fluid, a lubricant should be selected that is compatible with both the O-Ring compound and the system fluid.



Chamfers on cylinder bore or piston rod permit assembly without pinching O-Ring. When ring must pass over cross-drilled port (not recommended), the hole should be chamfered or undercut.

(PREFERRED)

#### STEP 6. SELECT THE COMPOUND

**Preferred compounds** Back in the first design step we selected the elastomer family for our applications. In succeeding steps we selected a standard size and determined the required elastomer hardness. Now it's time to specify the National Seal Compound.

The table on page 14 shows elastomer families with compounds of each by hardness. Nearly all sealing applications can be accommodated with one of these compounds. Not all hardnesses are shown for all elastomers. This does not necessarily mean compounds are unavailable, just that they are non-standard.

Specification compounds National compounds which meet the more popular material specifications are listed beginning on page 19. For convenience, non-material specifications pertaining to O-Rings are also shown. The great number of existing specifications makes a complete list impractical. Please contact us if what you need is not listed.

Special compounds Some seal applications have unusual requirements. National has some appropriately unusual O-Ring compounds. A portion of these are described beginning on page 25. We would like to work with you on unusual or demanding O-Ring applications. Just ask!

## STEP 7. SELECT THE NATIONAL PART NUMBER

Part numbers Having selected the proper O-Ring cross section, specified the gland dimensions and selected the compound, the only thing remaining is to put it all together and specify the National Seal O-Ring part number on your blueprint and materials list.

National O-Rings are specified by a threepart number: XX Aerospace Standard series - XXX Dash Number XXX Compound For example, AS-226 B46 describes an O-Ring with a cross-section diameter of 0.139 inch (3.53 mm), an ID of 1.984 inches (50.39 mm) made of nitrile with a hardness of 70.

#### PREFERRED COMPOUNDS BY POLYMER AND HARDNESS

| POLYMER                 |     | HARD |     |     |     |     |
|-------------------------|-----|------|-----|-----|-----|-----|
|                         | 40  | 50   | 60  | 70  | 80  | 90  |
| NITRILE (Buna N)        | B62 | C24  | C20 | B46 | C89 | C90 |
| ETHYLENE-PROPYLENE      |     |      | E66 | E50 | E59 | E63 |
| NEOPRENE                | N27 | N30  | N6  | N11 | N14 |     |
| FLUOROCARBON            |     |      | V16 | V14 |     | V23 |
| SILICONE                | S71 | S64  | S66 | S59 | S69 |     |
| FLUOROSILICONE          |     |      | F52 | F80 |     |     |
| STYRENE-BUTADIENE (SBR) |     | G22  | G43 | G62 |     |     |
| POLYACRYLATE            |     |      |     | L57 | L51 |     |
| POLYURETHANE            |     |      | U75 | U67 | U65 |     |
| BUTYL                   |     |      | J14 | J31 |     |     |
| POLYSULFIDE             |     |      | K4  |     |     |     |
| HYPALON                 |     |      |     | Н9  | Н8  | H11 |
| EPICHLOROHYDRIN         |     |      |     | Z4  | Z8  |     |

Shrinkage A majority of compounds produced in the same mold will have similar shrink characteristics, and therefore the parts will have like dimensions. However, some compounds shrink more and when produced in standard molds will result in smaller sizes. These compounds are subject to greater dimensional variation, so

require wider tolerances.

When O-Rings from a high-shrink compound are required for a specific size, molds may be made, at additional cost, to compensate for the shrinkage. National's design engineers will assist the designer in any final determination.

## FLUID COMPATIBILITY TABLE

#### KEY:

| B, C | Nitrile            | J   | Butyl       | ٧ | Fluorocarbon   | G   | Styrene-butadiene |
|------|--------------------|-----|-------------|---|----------------|-----|-------------------|
| E    | Ethylene-Propylene | K . | Polysulfide | S | Silicone       | . L | Polyacrylate      |
| N    | Neoprene           | Н   | Hypalon*    | F | Fluorosilicone | U   | Polyurethane      |

|                        | National<br>Elastomer |                          | National<br>Elastomer |                           | National<br>Elastomer |
|------------------------|-----------------------|--------------------------|-----------------------|---------------------------|-----------------------|
|                        | (In order of          |                          | (In order of          |                           | In order of           |
| Fluid                  | Recommendation)       | Fluid Re                 | ecommendation)        | Fluid Rec                 | ommendation)          |
| Assailastonas          | _                     | A                        | D. V. E               | B. H (F 4)                | 0                     |
| Acetaldehyde           | E<br>B, E, N          | Anderol L-774            | B, V, F               | Butter (Food)             | C<br>E                |
| Acetamide              |                       | Aniline                  | E                     | Butyl Acetate             |                       |
| Acetic Acid (Glacial)  | E<br>E                | Aniline Dyes             | E                     | Butyl Acrylate            | K                     |
| Acetic Acid (30%)      |                       | Aniline Hydrochloride    | E                     | Butyl Alcohol             | B, N, V               |
| Acetic Anhydride       | N, E                  | Animal Oil (Lard)        | B, V, F               | Butyl Amine               | S, E                  |
| Acetone                | E<br>E                | Aqua Regia               | E, F                  | Butyl Benzoate            | E, V                  |
| Acetophenone           | E                     | Aroclor                  | ٧ .                   | Butyl Carbitol            | E                     |
| Acetyl Acetone         |                       | Arsenic Acid             | F, E                  | Butylene                  | V, F, B               |
| Acetyl Chloride        | V, F                  | Askarel                  | V, B, F               | Butyl Ether               | K                     |
| Acetylene              | E, B                  | Asphalt                  | V, K                  | Butyl Butyrate            | E, V                  |
| Acetylene Tetrabromide | 40.774.4-17-          | 5 . 611                  |                       | Butyl Oleate              | V, E                  |
| Aerozine 50            | E                     | Barium Chloride          | B, E                  | Butyl Stearate            | V, F, B               |
| Air (Below 300 °F.)    | E, B                  | Barium Hydroxide         | B, E                  | Butyraldehyde             | E, K                  |
| Air (Above 300 °V.)    | S, V, F               | Barium Sulfide           | B, E                  | Butyric Acid              | V, E                  |
| Alkazene               | V, F, K               | Beer (Food)              | C                     | Calcine Liquors           | B, E                  |
| Alum                   | B, E                  | Beet Sugar Liquors (Food |                       | Calcium Acetate           | E                     |
| Aluminum Acetate       | E, B                  | Benzaldehyde             | E                     | Calcium Bisulfite         | B, N, V               |
| Aluminum Bromide       | B, E, N               | Benzene                  | V, F, K               | Calcium Chloride          | B, E, N               |
| Aluminum Chloride      | B, E, N               | Benzenesulfonic Acid     | V, F, N               | Clacium Hydroxide         | B, E, N               |
| Aluminum Fluoride      | B, E, N               | Benzine                  | V, F, K               | Calcium Hypochlorite      | E, V                  |
| Aluminum Nitrate       | B, E, N               | Benzoic Acid             | V, F, K               | Calcium Nitrate           | B, E, N               |
| Aluminum Sulfate       | B, E, N               | Benzochloride            | V, F, E               | Calcium Sulfide           | B, E, N               |
| Amines                 | E                     | Benzophenone             | V, F, E               | Cane Sugar Liquors (Food) |                       |
| Ammonia (Anhydrous)    |                       | Benzyl Alcohol           | V, F, E               | Carbitol                  | E, B                  |
| Ammonia (Liquid)       | E, B                  | Benzyl Benzoate          | V, F, E               | Carbolic Acid             | E, F                  |
| Ammonium Carbonate     | E, N                  | Benzyl Chloride          | V, F                  | Carbon Bisulfide          | V, F                  |
| Ammonium Chloride      | B, E, N               | Black Sulfate Liquors    | E                     | Carbonic Acid             | E, N                  |
| Ammonium Hydroxide     | E, B                  | Blast Furnace Gas        | V, S                  | Carbon Dioxide            | B, E                  |
| Ammonium Nitrate       | B, E                  | Bleach Liquor            | E, V                  | Carbon Disulfide          | V, F                  |
| Ammonium Nitrite       | B, E                  | Borax                    | B, E                  | Carbon Monoxide           | B, E                  |
| Ammonium Persulfate    | E                     | Bordeaux Mixture         | E, V                  | Carbon Tetrachloride      | V, F                  |
| Ammonium Phosphate     | B, E                  | Boric Acid               | B, E                  | Castor Oil (Food)         | С                     |
| Ammonium Sulfate       | B, E                  | Boron Fluids (HEF)       | V, F                  | Cellosolve                | E, K                  |
| Ammonium Sulfide       | B, E                  | Brake Fluid (Automotive) |                       | Cellosolve Acetate        | E, K                  |
| Amyl Acetate           | E                     | Bromine                  | E, V, F               | Cellulubes                | E, K                  |
| Amyl Alcohol           | E                     | Bromine Water            | E, F                  | China Wood Oil            | B, V                  |
| Amyl Borate            | B, N, K               | Bromobenzene             | V, F                  | Chlorinated Solvents      | V, F                  |
| Amyl Chloronaphthalen  |                       | Bunker Oil               | B, V, F               | Chlorine                  | E, F                  |
| Amyl Chloride          | V, F                  | Butadiene                | V, F, E               | Chlorine Dioxide          | E                     |
| Amyl Naphthalene       | V, F                  | Butane                   | B, V, K               | Chloroacetic Acid         | E                     |

| EI<br>(In                 | lational<br>astomer<br>order of<br>nmendation) | (1                       | National<br>Elastomer<br>n order of<br>mmendation) | Fluid R                  | National<br>Elastomer<br>(In order of<br>ecommendation) |
|---------------------------|------------------------------------------------|--------------------------|----------------------------------------------------|--------------------------|---------------------------------------------------------|
| Chloroacetone             | Ε                                              | Dichlorobutane           | V, B                                               | Ethyl Formate            | V, F, E                                                 |
| Chlorobenzene             | V, F                                           | Dichloro-Isopropyl Ether | K                                                  | Ethyl Hexanol            | B, E                                                    |
| Chlorobromomethane        | V, F, E                                        | Dicyclohexylamine        | В                                                  | Ethyl Mercaptan          | V                                                       |
| Chlorobutadiene           | V, F, E                                        | Diesel Oil               | B, V, F                                            | Ethyl Oxalate            | V, K, F                                                 |
| Chlorododecane            | V, F, E                                        | Diester Syn. Lubricants  | B, V, F                                            | Ethyl Pentachlorobenzene |                                                         |
| Chloroform                | V, F                                           | Diethylamine             | E                                                  | Ethyl Silicate           | E, B                                                    |
| Chloronaphthalene         | V, F                                           | Diethyl Ether            | K                                                  | Ferric Chloride          | E, B                                                    |
| Chlorotoluene             | V, F                                           | Diethylene Glycol        | E, B                                               | Ferric Nitrate           | E, B                                                    |
| Chlorox                   | E, F                                           | Diethyl Sebacate         | V, E                                               | Ferric Sulfate           | E, B                                                    |
| Chlorophenol              | V                                              | Difluorodibromomethane   | Ε                                                  | Fluoboric Acid           | E, N                                                    |
| Chrome Plating Solutions  | E                                              | Diisobutylene            | V, B, K                                            | Fluorolube               | E, B                                                    |
| Chromic Acid              | E                                              | Diisooctyl Sebacate      | V, E                                               | Fluorochloroethylene     | V                                                       |
| Citric Acid (Food)        | C                                              | Diisopropyl Ketone       | E                                                  | Formaldehyde             | E, B                                                    |
| Cobalt Chloride           | B, E                                           | Dimethyl Formamide       | B, S, E                                            | Formic Acid              | E, N                                                    |
| Cocoanut Oil (Food)       | C                                              | Dimethyl Phthalate       | E, V                                               | Freon 11                 | K, V, B                                                 |
| Cod Liver Oil (Food)      | С                                              | Dioctyl Phthalate        | E, V                                               | Freon 12                 | N, B, K                                                 |
| Coke Oven Gas             | V, F, S                                        | Dioctyl Sebacate         | V, E                                               | Freon 13                 | N, B, K                                                 |
| Coolanol                  | N, V, F                                        | Dioxane                  | E                                                  | Freon 13B1               | N, B, K                                                 |
| Compass Fluid             | B, E                                           | Dioxolane                | E                                                  | Freon 14                 | N, B, K                                                 |
| Copper Acetate            | E                                              | Dipentene                | V, K, B                                            | Freon 21                 | N                                                       |
| Copper Chloride           | B, E                                           | Diphenyl                 | V, F, K                                            | Freon 22                 | N, K, E                                                 |
| Copper Cyanide            | B, E                                           | Diphenyl Oxides          | V, F                                               | Freon 31                 | N, E                                                    |
| Copper Sulfate            | B, E                                           | Dowtherm A or E          | V, F                                               | Freon 32                 | N, E                                                    |
| Corn Oil (Food)           | С                                              | Dry Cleaning Fluids      | V, F                                               | Freon 112                | K, B                                                    |
| Cottonseed Oil (Food)     | С                                              | ACC SERVICE SECTION      |                                                    | Freon 113                | N, B, K                                                 |
| Creosote                  | B, V, F                                        | Epichlorohydrin          | Ε                                                  | Freon 114                | N, B, E                                                 |
| Cresols                   | F, V                                           | Ethanolamine             | N, E, B                                            | Freon 114B2              | K, N                                                    |
| Crude Oil                 | V, F                                           | Ethers                   | K                                                  | Freon 115                | B, N, E                                                 |
| Cutting Oil               | B, V, F                                        | Ethyl Acetate            | E, K                                               | Freon 142b               | N, B, E                                                 |
| Cyclohexane               | B, V, F                                        | Ethyl Acetoacetate       | E, K                                               | Freon 152a               | N, B, E                                                 |
|                           |                                                | Ethyl Acrylate           | E, K                                               | Freon 218                | N, B, E                                                 |
| 227 727                   | **************************************         | Ethyl Alcohol            | E, B                                               | Freon C316               | N, B, K                                                 |
| Decalin                   | V, F, K                                        | Ethyl Benzene            | V, F, E                                            | Freon C318               | N, B, E                                                 |
| Decane                    | B, V, F                                        | Ethyl Benzoate           | V, F, K                                            | Freon BF                 | K, B, N                                                 |
| Deionized Water           | E, B                                           | Ethyl Cellosolve         | E, K                                               | Freon MF                 | K, V, B                                                 |
| Denatured Alcohol         | E, B                                           | Ethyl Cellulose          | B, N, E                                            | Freon TF                 | N, B, E                                                 |
| Detergents                | E, B                                           | Ethyl Chloride           | E, B, N                                            | Fuel Oil                 | B, V, F                                                 |
| Developing Fluids (Photo) | E, N                                           | Ethyl Chlorocarbonate    | V, F                                               | Fumaric Acid             | B, V, F                                                 |
| Diacetone                 | E                                              | Ethyl Chloroformate      | V, F                                               | Furfural                 | Ε                                                       |
| Diacetone Alcohol         | Ε                                              | Ethylene Chloride        | V                                                  | Furfuryl Alcohol         | E                                                       |
| Dibenzyl Ether            | K, E                                           | Ethylene Chlorohydrin    | V, E                                               | 22 10 22 11              | 20 121 231                                              |
| Dibenzyl Sebacate         | V, E                                           | Ethylene Diamine         | E, B                                               | Gallic Acid              | V, F, E                                                 |
| Dibromoethyl Benzene      | V, F                                           | Ethylene Dibromide       | ٧                                                  | Gasoline (Automotive)    | B, V, F                                                 |
| Dibutylamine              | E, N                                           | Ethylene Dichloride      | ٧                                                  | Gelatin (Food)           | C                                                       |
| Dibutyl Ether             | K                                              | Ethylene Glycol          | E, B                                               | Glucose (Food)           | С                                                       |
| Dibutyl Phthalate         | E, K                                           | Ethylene Oxide           | E                                                  | Glue                     | B, E                                                    |
| Dibutyl Sebacate          | E, K                                           | Ethylene Trichloride     | ٧                                                  | Glycerine                | B, E                                                    |
| Dichlorobenzene           | V, K                                           | Ethyl Ether              | K                                                  | Glycols                  | E, B                                                    |

| Fluid                    | National<br>Elastomer<br>(In order of<br>Recommendation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Fluid                                 | National<br>Elastomer<br>(In order of<br>Recommendation) | Fluid                 | National<br>Elastomer<br>(In order of<br>Recommendation) |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------|-----------------------|----------------------------------------------------------|
| Green Sulfate Liquors    | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Lead Nitrate<br>Lead Sulfamate        | E, B<br>N, E, V                                          | Monovinyl Acetylene   | E, B                                                     |
| HEF-2                    | ٧                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ligroin                               | B, V, F                                                  |                       |                                                          |
| Helium                   | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Lime Bleach                           | B, V, F<br>B, E, V                                       | Naphtha               | V, B, F                                                  |
| Heptane                  | B, V, F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lime Sulfur                           | E, V                                                     | Naphthalene           | V, B, I<br>V, F, K                                       |
| Hexaldehyde              | E, N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lindol                                | E, V                                                     | Napthenic Acid        | V, F, B                                                  |
| Hexane                   | B, V, F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lindol<br>Linoleic Acid               | S, N                                                     | Natural Gas           | B, V, E                                                  |
| Hexene                   | V, F, K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Linseed Oil                           | B, V, F                                                  | Neatsfoot Oil         | B, V, F                                                  |
| Hexyl Alcohol            | B, V, F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Liquid Oxygen                         | S, V                                                     | Nickel Acetate        | E, B                                                     |
| Houghto-Safe 271         | B, E, V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Liquid Oxygen Liquefied Petroleum Gas |                                                          | Nickel Chloride       | E, B                                                     |
| 620                      | B, E, V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (LPG)                                 | B, V, K                                                  | Nickel Sulfate        | E, B                                                     |
| 1010                     | E, V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lubricating Oils                      | B, V, K                                                  | Nitric Acid (Dilute)  | E, B                                                     |
| 1055                     | E, V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lye                                   | Б, <b>v</b> , г                                          | Nitrobenzene          | V                                                        |
| 1120                     | E, V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lyc                                   | -                                                        | Nitroethane           | N, E                                                     |
| 5040                     | B, V, F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Magnesium Chloride                    | E, B                                                     | Nitrogen              | E, B                                                     |
| Hydrolube                | B, E, V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Magnesium Hydroxide                   | E, V                                                     | Nitromethane          | K, E                                                     |
| Hydraulic Oil (Petroleul |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Magnesium Sulfate                     | E, B,                                                    | Nitropropane          | K, E                                                     |
| Hydrazine                | Delivery All District All District And District And All District And All District And All District And District And All District And All District And All District And District And All District And All District And All District And District And All District And All District And All District And District And All District And All District And All District And District | Magnesium Sulfite                     | E, B                                                     | Non-Toxic Compound    | N, L                                                     |
| Hydrobromic Acid         | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Maleic Acid                           | V, K                                                     | (Food)                | С                                                        |
| Hydrochloric Acid        | Ė                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Maleic Anhydride                      | V                                                        | (1000)                | U                                                        |
| Hydrocyanic Acid         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Malic Acid                            | <b>В</b> , V, F                                          | Octadecane            | B, V, F                                                  |
| Hydrofluoric Acid        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mercuric Chloride                     | E, B                                                     | Octane                | B, V, K                                                  |
| Hydrofluosilicic Acid    | E<br>E<br>E<br>E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mercury                               | E, B                                                     | Octyl Alcohol         | E, V                                                     |
| Hydrogen                 | Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mesityl Oxide                         | E, K                                                     | Oleic Acid            | B                                                        |
| Hydrogen Peroxide        | F, V, E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Methyl Acetate                        | E, K                                                     | Oleum Spirits (Food)  | C                                                        |
| Hydrogen Sulfide         | E, B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Methyl Acrylate                       | E, K                                                     | Oleum                 | Ē                                                        |
| Hydroquinone             | V, F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Methylacrylic Acid                    | E, N                                                     | Olive Oil (Food)      | Č                                                        |
| Hypochlorous Acid        | É                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Methyl Alcohol                        | E, N                                                     | Oronite 8200          | N, B, V                                                  |
| m poomorous nota         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Methyl Bromide                        | V, F                                                     | Oronite 8515          | N, B, V                                                  |
| lodine                   | V, E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Methyl Cellosolve                     | E E                                                      | Ortho-Dichlorobenzene | V, F                                                     |
| Isobutyl Alcohol         | E, B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Methyl Chloride                       | V, F, K                                                  | 0S-45                 | N, V, F                                                  |
| Isobutyl Butyrate        | E, B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Methyl Cyclopentane                   | V, F, K                                                  | Oxalic Acid           | E, V                                                     |
| Isododecane              | B, V, F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Methylene Chloride                    | V, F                                                     | Oxygen (Gaseous)      | S, E                                                     |
| Iso-Octane               | B, V, F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Methylene Dichloride                  | V, F                                                     | Ozone                 | E, N                                                     |
| Isophorone               | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Methyl Ether                          | E, B                                                     | E.C.S.M.              |                                                          |
| Isoproptyl Acetate       | E, K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Methyl Ethyl Ketone                   | E, K                                                     |                       |                                                          |
| Isopropyl Alcohol        | E, B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Methyl Formate                        | N, E                                                     | Paint Solvents        | K                                                        |
| Isopropyl Chloride       | V, F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Methyl Isobutyl Ketone                | E, K                                                     | Palmitic Acid         | B, V, F, K                                               |
| Isopropyl Ether          | B, K, N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Methyl Isopropyl Ketone               |                                                          | Para-Dichlorobenzene  | V, F                                                     |
|                          | -,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Methyl Methacrylate                   | K                                                        | Peanut Oil (Food)     | C                                                        |
| JP-1 Thru JP-6 Fuel      | B, V, F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Methyl Oleate                         | V, E                                                     | Pentane               | . B, V                                                   |
|                          | -1.1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Methyl Salicylate                     | E,                                                       | Perchloric Acid       | F, E                                                     |
| Kerosene                 | B, V, F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Milk (Food)                           | C                                                        | Perchlorethylene      | V, K, F                                                  |
|                          | 21.11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mineral Oil (Food)                    | Č                                                        | Petrolatum            | B, V, F                                                  |
| Lacquers                 | K, E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Monomethylaniline                     | v                                                        | Petroleum Oils        | B, V, F                                                  |
| Lactic Acid (Food)       | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Monobromobenzene                      | V, K                                                     | Phenol                | F, V                                                     |
| Lard (Food)              | Č                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Monochlorobenzene                     | V, F                                                     | Phenylbenzene         | V, F, K                                                  |
| Lead Acetate             | Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Monoethanolamine                      | E                                                        | Phenylethyl Ether     | K                                                        |

| Fluid                                                                                                                                           | National<br>Elastomer<br>(In order of<br>Recommendation) | Fluid R                                                                                                                            | National<br>Elastomer<br>(In order of<br>Recommendation)     | (1                                                                                                                                                             | National<br>Elastomer<br>n order of<br>mmendation)      |
|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| Phenylhydrazine Phorone Phosphate Esters, Alky Phosphate Esters, Aryl Phosphoric Acid (45% Phosphorous Trichloric Pickling Solution Picric Acid | V, E<br>) E<br>de E, V<br>E<br>E                         | Silicone Greases Silicone Oils Siver Cyanide Silver Nitrate Skydrol Soap Solutions Sodium Acetate Sodium Bicarbonate               | E, B<br>E, B<br>E, B<br>E<br>E, B<br>E, B<br>E, B            | Tertiary Butyl Alcohol Tertiary Butyl Catechol Tertiary Butyl Mercaptan Tetrabromoethane Tetrachloroethane Tetrachloroethylene Tetraethyl Lead Tetrahydrofuran | V, B, E<br>V, E<br>V<br>V, F<br>V, F<br>V, F, B<br>E, K |
| Pinene Pine Oil Plating Solutions Pneumatic Service Polyvinyl Acetate Potassium Acetate Potassium Chloride Potassium Cyanide                    | V, F, B<br>B, V, F<br>E<br>B, E, N<br>E<br>E, B<br>E, B  | Sodium Borate Sodium Bisulfate Sodium Bisulfite Sodium Carbonate Sodium Chloride Sodium Cyanide Sodium Dichromate Sodium Hydroxide | E, B<br>E, B<br>E, B<br>E, B<br>E, B<br>E, B                 | Tetralin Titanium Tetrachloride Toluene (Toluol) Transformer Oil Triacetin Tributoxyethyl Phosphate Tributyl Mercaptan Tributyl Phosphate                      | V, F<br>V, F<br>V, F<br>B, V, F<br>E, V<br>V, E<br>E, K |
| Potassium Dichromate Potassium Hydroxide Potassium Nitrate Potassium Sulfate Potassium Sulfite Prestone Propane                                 | E, B<br>E, B<br>E, B<br>E, B<br>E, B                     | Sodium Hypochlorite Sodium Metaphosphate Sodium Nitrate Sodium Perborate Sodium Peroxide Sodium Phosphate Sodium Silicate          | E, N<br>E, B<br>E, B<br>E, V<br>E, B<br>E, B                 | Trichloroethane Trichloroacetic Acid Trichloroethylene Tricresyl Phosphate Triethanolamine Trinitrotoluene Trioctyl Phosphate                                  | V, F<br>E, B<br>V, F<br>E<br>E<br>V, N<br>E             |
| Propyl Acetate Propyl Acetone Propyl Alcohol Propyl Nitrate Propylene Propylene Oxide Pyranol                                                   | E, K<br>E, K<br>E<br>V, F, K<br>E<br>B, V, F             | Sodium Sulfate Sodium Sulfide Sodium Sulfite Sodium Thiosulfate Soybean Oil (Food) Stannic Chloride Stannous Chloride              | E, B<br>E, B<br>E, B<br>C<br>E, B<br>E, B                    | Trisodium Phosphate Tung Oil Turbine Oil Turpentine Unsym. Dimethyl Hydrazin                                                                                   |                                                         |
| Pydraul 150<br>A-200<br>A C<br>F-9<br>625<br>Pyridine Oil<br>Pyrolube                                                                           | E, V<br>V, F, K<br>E, V<br>E, V<br>E<br>V, E             | Steam Stearic Acid Stoddard Solvent Styrene Sucrose Solutions (Food Sulfur Sulfur Chloride Sulfur Dioxide                          | E, B<br>B, E<br>B, V, F<br>V, F<br>C<br>N, E<br>V, F<br>E, V | Varnish Vegetable Oil (Food) Versilube F-50 Vinegar (Food)  Water (Food) Whiskey (Food) Wine (Food)                                                            | V, K, F<br>C<br>E, B<br>C<br>C<br>C                     |
| Red Oil (MIL-H-5606)<br>RJ-1<br>RP-1<br>Rapeseed Oil<br>Sal Ammoniac                                                                            | B, V, F<br>B, V, F<br>B, V, F<br>E, V                    | Sulfur Dioxide Sulfur Hexafluoride Sulfur Free Compound Sulfur Trioxide Sulfuric Acid Sulfurous Acid                               | E, V<br>N, E<br>N<br>V, E<br>E                               | White Pine Oil  Xylene (Xylol)  Xylidenes  Zinc Acetate                                                                                                        | V, F, B<br>V, F, B<br>B, E<br>E, B                      |
| Salicylic Acid<br>Salt Water<br>Sewage<br>Silicate Esters                                                                                       | E, V<br>E, B<br>E, B<br>N, V, F                          | Tannic Acid<br>Tar<br>Tartaric Acid                                                                                                | E, B<br>V, B<br>B, V, F                                      | Zinc Chloride<br>Zinc Sulfate                                                                                                                                  | E, B<br>E, B                                            |

# SPECIFICATIONS A NUMERICAL COMPILATION

|              | Brief identification of popular O-Ring related specifications with National part numbers (compound, size, or both), shown where applicable.                                                   |  |  |  |  |  |  |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| SAE J14      | Cancelled. Superceded by SAE J 200 and ASTM D2000. See ASTM D2000.                                                                                                                            |  |  |  |  |  |  |
| MIL-STD-105  | Statistical Sampling.                                                                                                                                                                         |  |  |  |  |  |  |
| SAE J 120    | Class 1: B46                                                                                                                                                                                  |  |  |  |  |  |  |
|              | Class 2: C9 O-Ring size dash numbers correspond with AS 568 series. Dash numbers with "R" prefix denote square section rings.                                                                 |  |  |  |  |  |  |
| MIL-STD-129  | Marking for shipment and storage.                                                                                                                                                             |  |  |  |  |  |  |
| MIL-STD-130  | Identification marking.                                                                                                                                                                       |  |  |  |  |  |  |
| MIL-STD-190  | Identification marking.                                                                                                                                                                       |  |  |  |  |  |  |
| SAE J200     | Nomenclature system for specifying properties of rubber. See ASTM D2000.                                                                                                                      |  |  |  |  |  |  |
| MIL-STD-413  | O-Ring visual inspection guide. National O-Rings comply where specified.                                                                                                                      |  |  |  |  |  |  |
| MIL-STD-417  | Nomenclature system for specifying properties of rubber supplemental to MIL-R-3065. See MIL-R-3065.                                                                                           |  |  |  |  |  |  |
| ANA 438      | Cancelled. Superceded by MIL-STD-1523.                                                                                                                                                        |  |  |  |  |  |  |
| SAE-J515     | Type I: C90 Type II: E63                                                                                                                                                                      |  |  |  |  |  |  |
| AS 568       | Standard O-Ring sizes. See page 25 for list. (Formerly ARP 568).                                                                                                                              |  |  |  |  |  |  |
| FED-STD-601  | Rubber sampling and testing procedures.                                                                                                                                                       |  |  |  |  |  |  |
| NAS 617      | C83 (Compound per MIL-R-7362) Size dash numbers correspond with AS 568 tube fitting gasket series.                                                                                            |  |  |  |  |  |  |
| MIL-HDBK-695 | Shelf storage of rubber products.                                                                                                                                                             |  |  |  |  |  |  |
| AS 708       | Special O-Ring surface condition requirements (top visual quality).                                                                                                                           |  |  |  |  |  |  |
| MIL-STD-726  | Packaging.                                                                                                                                                                                    |  |  |  |  |  |  |
| ASTM D735    | Cancelled. Superceded by SAE J200 and ASTM D2000. See ASTM D2000.                                                                                                                             |  |  |  |  |  |  |
| TT-S-735     | Hydrocarbon test fluids.                                                                                                                                                                      |  |  |  |  |  |  |
| AS 757       | Straight thread boss dimensions.                                                                                                                                                              |  |  |  |  |  |  |
| ZZ-R-765     | Classes 2A and 2B, grade 40: S71 Classes 2A and 2B, grade 50: S64 Classes 2A and 2B, grade 50: S66 Classes 2A and 2B, grade 80: S69 Classes 2A and 2B, grade 80: S69 Classes 3, grade 50: S77 |  |  |  |  |  |  |

| AS 871       | O-Ring dimensional inspection guide.                                            |  |  |  |  |  |  |
|--------------|---------------------------------------------------------------------------------|--|--|--|--|--|--|
| MIL-G-1149   | Type 1, Class 1: N30                                                            |  |  |  |  |  |  |
| ARP 1231     | Gland design considerations.                                                    |  |  |  |  |  |  |
| ARP 1232     | Gland design, static, radial squeeze.                                           |  |  |  |  |  |  |
| ARP 1233     | Gland design, dynamic, radial squeeze.                                          |  |  |  |  |  |  |
| ARP 1234     | Gland design, static, axial squeeze.                                            |  |  |  |  |  |  |
| MIL-STD-1523 | Age control requirements applicable to certain nitrile specification compounds. |  |  |  |  |  |  |
| NAS 1593     | V14. O-Ring size dash numbers correspond with AS 568 series.                    |  |  |  |  |  |  |

Rubber/fluid compatibility information.

**AIR 786** 

| NAS 1594          | V23. O-Ring size dash numbers correspond with                                                                                                                                   | AS 568 series.                                      |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| NAS 1595          | V14. O-Ring size dash numbers correspond with a gasket series.                                                                                                                  | AS 568 tube fitting                                 |
| NAS 1596          | V23. O-Ring size dash numbers correspond with a gasket series.                                                                                                                  | AS 568 tube fitting                                 |
| NAS 1613          | E79. Ethylene propylene O-Rings for Skydrol usag series, NAS 1612 tube fitting gasket series).                                                                                  | ge. (NAS 1611 AS 568                                |
| ASTM D2000        | NOMENCLATURE SYSTEM FOR SPECIFYING P                                                                                                                                            | ROPERTIES OF RUBBER                                 |
|                   | Only the more popular specification descriptions<br>National Compounds in compliance with nearly a<br>tions are available. Please request further inform                        | all specification varia-                            |
|                   | ASTM D2000/SAEJ200                                                                                                                                                              | National Compound                                   |
|                   | NITRILE (Buna N)                                                                                                                                                                |                                                     |
|                   | 2BG415B14E14E34F17<br>2BG515B14E14E34F17<br>2BG615B14E14E34F17<br>2BG715B14E14E34E51E61<br>3CH715A25B34E16E36<br>2BG715B14E14E34F17<br>6BG815A14B14E14E34<br>6BG915A14B14E14E34 | B62<br>C24<br>C20<br>B46<br>B46<br>B3<br>C89<br>C90 |
|                   | ETHYLENE-PROPYLENE                                                                                                                                                              |                                                     |
|                   | 2CA615A25B44C12<br>2CA720A25B44C12<br>3BA720A14B13C12F19<br>3BA820A14B13C12F19<br>3BA910A14B13C12F17                                                                            | E66<br>E50<br>E50<br>E59<br>E63                     |
|                   | NEOPRENE*                                                                                                                                                                       |                                                     |
|                   | 2BE415A14B14E14E34F17<br>2BE515A14B14E14E34F17<br>2BE615A14B14E14E34F17<br>2BE715A14B14E14E34F17<br>2BE815A14B14E14E34F17                                                       | N27<br>N30<br>N6<br>N11<br>N14                      |
|                   | FLUOROCARBON (Viton, Fluorel*)                                                                                                                                                  |                                                     |
|                   | 2HK610A1-10B38E88<br>2HK715A1-10B38E71E88<br>3HK915A1-10B38                                                                                                                     | V16<br>V14<br>V23                                   |
|                   | SILICONE  2GE407A19B37E16E36F19  5GE507A19B37E16E36F19  5GE607A19B37E16E36F19  7GE707A19B37E16E36F19  7GE807A19B37E16E36F19                                                     | S71<br>S64<br>S66<br>S59<br>S69                     |
|                   | FLUOROSILICONE<br>2FK608A19E36E71F19                                                                                                                                            | F52                                                 |
| <b>ASTM D2000</b> | STYRENE-BUTADIENE (SBR)                                                                                                                                                         |                                                     |
| (continued)       | 3BA520A14B13F17<br>3BA620A14B13F17<br>3BA720A14B13F17                                                                                                                           | G22<br>G43<br>G62                                   |
|                   | POLYACRYLATE<br>3DH715A26B16E16E36                                                                                                                                              | L57                                                 |
| AMS 2817          | Individual (unit) packaging.                                                                                                                                                    |                                                     |
| MIL-R-3065        | NOMENCLATURE SYSTEM FOR SPECIFYING PROPERTY Only the more popular specification descriptions                                                                                    |                                                     |

| tional Compounds in compliance with nearly all specification variations |
|-------------------------------------------------------------------------|
| are available. Please request further information where required.       |

| are available. Please request further inform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ation where required.                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| MIL-R-3065/MIL-STD-417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | National Compound                           |
| NITRILE (Buna N) SB415 A <sub>1</sub> B <sub>1</sub> E <sub>3</sub> E <sub>5</sub> F <sub>1</sub> SB515 A <sub>1</sub> B <sub>1</sub> E <sub>3</sub> E <sub>5</sub> F <sub>1</sub> SB615 A <sub>1</sub> B <sub>1</sub> E <sub>3</sub> E <sub>5</sub> F <sub>1</sub> SB715 A <sub>1</sub> B <sub>1</sub> E <sub>3</sub> E <sub>5</sub> SB715 A <sub>1</sub> B <sub>1</sub> E <sub>3</sub> E <sub>5</sub> SB815 A <sub>1</sub> B <sub>1</sub> E <sub>3</sub> E <sub>5</sub> SB915 A <sub>1</sub> B <sub>1</sub> E <sub>3</sub> E <sub>5</sub> SB915 A <sub>1</sub> B <sub>1</sub> E <sub>3</sub> E <sub>5</sub> | B62<br>C24<br>C20<br>B46<br>B3<br>B8<br>C32 |
| NEOPRENE*  SC415 A <sub>1</sub> B <sub>1</sub> E <sub>3</sub> F <sub>1</sub> SC515 A <sub>1</sub> B <sub>1</sub> E <sub>3</sub> F <sub>1</sub> SC615 A <sub>1</sub> B <sub>1</sub> E <sub>3</sub> F <sub>1</sub> SC715 A <sub>1</sub> B <sub>1</sub> E <sub>3</sub> F <sub>1</sub> SC815 A <sub>1</sub> B <sub>1</sub> E <sub>3</sub> F <sub>1</sub>                                                                                                                                                                                                                                                          | N27<br>N30<br>N6<br>N11<br>N14              |
| SILICONE  TA 407 E <sub>1</sub> E <sub>3</sub> F <sub>2</sub> L  TA 507 E <sub>1</sub> E <sub>3</sub> F <sub>2</sub> L  TA 607 E <sub>1</sub> E <sub>3</sub> F <sub>2</sub> GL  TA 707 E <sub>1</sub> E <sub>3</sub> F <sub>2</sub> GL  TA 807 E <sub>1</sub> E <sub>3</sub> F <sub>2</sub> GL                                                                                                                                                                                                                                                                                                                | S71<br>S64<br>S66<br>S59<br>S69             |
| STYRENE-BUTADIENE (SBR)  RS 520 A <sub>1</sub> B F <sub>1</sub> RS 620 A <sub>1</sub> B F <sub>1</sub> RS 720 A <sub>1</sub> B F <sub>1</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | G22<br>G43<br>G62                           |
| POLYACRYLATE TB 715 E <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | L57                                         |
| B55 B62 B54 C24 N8 N10 N2 C20 B8 B46 C20 N30 B13 B31 B14 N27 N6 N14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                             |
| S71<br>S64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                             |

**AMS 3200** AMS 3201 **AMS 3202 AMS 3205 AMS 3207 AMS 3208 AMS 3209** AMS 3212 **AMS 3213 AMS 3215 AMS 3220 AMS 3222 AMS 3226 AMS 3227 AMS 3228 AMS 3240 AMS 3241 AMS 3242** AMS 3301 AMS 3302 **AMS 3303** S66 AMS 3304 S59 **AMS 3305** S69 **AMS 3326** F52 **AMS 3335 S77 AMS 3337 S32 AMS 3345 S77 AMS 3357 S59** 

MIL-P-4861 Individual (Unit) packaging.

MIL-P-5315 C69 MIL-P-5510 D6

MIL-G-5514 Gland design recommendations.

MIL-P-5516 Class B: C65

AN6227 C65 (compound per MIL-P-5516). O-Ring sizes correspond with AS 568 but dash numbers are different. Interchange:

| AN<br>6227 | AS<br>568 | A N<br>6227 | AS<br>568 | A N<br>6227 | AS<br>568 | A N<br>6227 | AS<br>568 |
|------------|-----------|-------------|-----------|-------------|-----------|-------------|-----------|
| 1          | 006       | 23          | 218       | 45          | 342       | 67          | 440       |
| 2          | 007       | 24          | 219       | 46          | 343       | 68          | 441       |
| 3          | 800       | 25          | 220       | 47          | 344       | 69          | 442       |
| 4          | 009       | 26          | 221       | 48          | 345       | 70          | 443       |
| 5          | 010       | 27          | 222       | 49          | 346       | 71          | 444       |
| 6          | 011       | 28          | 325       | 50          | 347       | 72          | 445       |
| 7          | 012       | 29          | 326       | 51          | 348       | 73          | 446       |
| 8          | 110       | 30          | 327       | 52          | 349       | 74          | 447       |
| 9          | 111       | 31          | 328       | 53          | 426       | 75          | 448       |
| 10         | 112       | 32          | 329       | 54          | 427       | 76          | 449       |
| 11         | 113       | 33          | 330       | 55          | 428       | 77          | 450       |
| 12         | 114       | 34          | 331       | 56          | 429       | 78          | 451       |
| 13         | 115       | 35          | 332       | 57          | 430       | 79          | 452       |
| 14         | 116       | 36          | 333       | 58          | 431       | 80          | 453       |
| 15         | 210       | 37          | 334       | 59          | 432       | 81          | 454       |
| 16         | 211       | 38          | 335       | 60          | 433       | 82          | 455       |
| 17         | 212       | 39          | 336       | 61          | 434       | 83          | 456       |
| 18         | 213       | 40          | 337       | 62          | 435       | 84          | 457       |
| 19         | 214       | 41          | 338       | 63          | 436 ,     | 85          | 458       |
| 20         | 215       | 42          | 339       | 64          | 437       | 86          | 459       |
| 21         | 216       | 43          | 340       | 65          | 438       | 87          | 460       |
| 22         | 217       | 44          | 341       | 66          | 439       | 88          | 425       |

AN 6230 C65 (compound per MIL-P-5516). O-Ring sizes correspond with AS 568 but dash numbers are different. Interchange:

| AN<br>6230 | AS<br>568 | A N<br>6230 | AS<br>568 | A N<br>6230 | AS<br>568 | A N<br>6230 | AS<br>568 |
|------------|-----------|-------------|-----------|-------------|-----------|-------------|-----------|
| 1          | 223       | 14          | 236       | 27          | 249       | 40          | 262       |
| 2          | 224       | 15          | 237       | 28          | 250       | 41          | 263       |
| 3          | 225       | 16          | 238       | 29          | 251       | 42          | 264       |
| 4          | 226       | 17          | 239       | 30          | 252       | 43          | 265       |
| 5          | 227       | 18          | 240       | 31          | 253       | 44          | 266       |
| 6          | 228       | 19          | 241       | 32          | 254       | 45          | 267       |
| 7          | 229       | 20          | 242       | 33          | 255       | 46          | 268       |
| 8          | 230       | 21          | 243       | 34          | 256       | 47          | 269       |
| 9          | 231       | 22          | 244       | 35          | 257       | 48          | 270       |
| 10         | 232       | 23          | 245       | 36          | 258       | 49          | 271       |
| 11         | 233       | 24          | 246       | 37          | 259       | 50          | 272       |
| 12         | 234       | 25          | 247       | 38          | 260       | 51          | 273       |
| 13         | 235       | 26          | 248       | 39          | 261       | 52          | 274       |

| AN 6290     | Cancelled. Superseded by MS 28778.                                                                                                                                                                        |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AMS 7267    | S54                                                                                                                                                                                                       |
| AMS 7270    | B17                                                                                                                                                                                                       |
| AMS 7271    | C71                                                                                                                                                                                                       |
| AMS 7272    | C72                                                                                                                                                                                                       |
| AMS 7274    | B14                                                                                                                                                                                                       |
| AMS 7277    | J31                                                                                                                                                                                                       |
| AMS 7278    | V14                                                                                                                                                                                                       |
| AMS 7279    | V23                                                                                                                                                                                                       |
| AMS 7280    | V14                                                                                                                                                                                                       |
| MIL-R-7362  | Type 1: C92                                                                                                                                                                                               |
| MS 9020     | Type 1: C83  C71 (compound per AMS 7371) Size deep numbers correspond with                                                                                                                                |
|             | C71 (compound per AMS 7271). Size dash numbers correspond with AS 568 tube fitting gasket series.                                                                                                         |
| MS 9021     | C71 (compound per AMS 7271). Size dash numbers correspond with AS 568 series.                                                                                                                             |
| MS 9068     | S59 (compound per AMS 3304). Size dash numbers correspond with AS 568 series.                                                                                                                             |
| MS 9241     | C72 (compound per AMS 7272). Size dash numbers correspond with AS 568 series.                                                                                                                             |
| MS 9355     | C72 (compound per AMS 7272). Size dash numbers correspond with AS 568 series tube fitting gasket series.                                                                                                  |
| MS 9385     | S54 (compound per AMS 7267). Size dash numbers correspond with AS 568 series tube fitting gasket series.                                                                                                  |
| MS 9386     | S54 (compound per AMS 7267). Size dash numbers correspond with AS 568 series.                                                                                                                             |
| MS 9387     | V14 (compound per AMS 7278). Size dash numbers correspond functionally with AS 568 tube fitting gasket series. Offered on quotation basis only due to tolerance and parting line projection restrictions. |
| MS 9388     | V14 (compound per AMS 7278). Size dash numbers correspond functionally with AS 568 series. Offered on quotation basis only due to tolerance and parting line projection restrictions.                     |
| MIL-Q-9858  | Quality requirements. National complies.                                                                                                                                                                  |
| MS 9970     | V23 (compound per AMS 7279). Size dash numbers correspond functionally with AS 568 series. Offered on quotation basis only due to                                                                         |
|             | tolerance and parting line projection restrictions.                                                                                                                                                       |
| MS 17413    | Cancelled. Superseded by MS 9388.                                                                                                                                                                         |
| MIL-G-17553 | Cancelled. Superseded by MIL-P-5516.                                                                                                                                                                      |
| MIL-G-21569 | Class 1: B46. Quotation basis only due to documentation requirements.                                                                                                                                     |
| MS 24690    | C65 (compound per MIL-P-5516). Size AS 568-015.                                                                                                                                                           |
| MIL-P-25732 | C65.                                                                                                                                                                                                      |
| MIL-R-25897 | Cancelled. Superseded by MIL-R-83248.                                                                                                                                                                     |
| MIL-R-25988 | Class 1, Grade 60: F52<br>Class 1, Grade 70: F80                                                                                                                                                          |
| M25988/1    | F80 (compound per MIL-R-25988, Class 1, Grade 70). Size dash numbers correspond with AS 568 series. Offered on quotation basis only due to tolerance restrictions.                                        |
| M25988/3    | F52 (compound per MIL-R-25988, Class 1, Grade 60). Size dash numbers correspond with AS 568 series. Offered on quotation basis only due to tolerance restrictions.                                        |
|             |                                                                                                                                                                                                           |

MS 28775 C65 (compound per MIL-P-25732). Size dash numbers correspond with AS 568 series.

MS 28778 D6 (compound per MIL-P-5510). Size dash numbers correspond with AS 568 tube fitting gasket series.

MS 28784 Cancelled. Superseded by MS 28775.

MS 28900 N2 (compound per AMS 3209). Sizes:

| Series<br>Number | Inside Diameter<br>Inches(mm) | Tolerance ± Inches(mm) | Section Diameter<br>Inches(mm) | Tolerance ± Inches(mm) |
|------------------|-------------------------------|------------------------|--------------------------------|------------------------|
| 8                | .332(8.43)                    | .005(.13)              | .031(.79)                      | .003(.08)              |
| 10               | .410(10.41)                   | .005(.13)              | .031(.79)                      | .003(.08)              |
| 12               | .526(13.36)                   | .005(.13)              | .031(.79)                      | .003(.08)              |
| 14               | .643(16.33)                   | .005(.13)              | .031(.79)                      | .003(.08)              |
| 16               | .775(19.69)                   | .006(.15)              | .031(.79)                      | .003(.08)              |
| 18               | .898(22.81)                   | .006(.15)              | .031(.79)                      | .003(.08)              |
| 20               | .987(25.7)                    | .006(.15)              | .031(.79)                      | .003(.08)              |
| 22               | 1.112(28.24)                  | .006(.15)              | .031(.79)                      | .003(.08)              |
| 24               | 1.226(31.14)                  | .006(.15)              | .031(.79)                      | .003(.08)              |
| 28               | 1.450(36.83)                  | .010(.15)              | .047(.79)                      | .003(.08)              |
| 32               | 1.670(42.42)                  | .010(.15)              | .047(.79)                      | .003(.08)              |
| 36               | 1.891(48.03)                  | .010(.15)              | .047(.79)                      | .003(.08)              |

MS 29512 C69 (compound per MIL-P-5315). Size dash numbers correspond with AS 568 tube fitting gasket series.

MS 29513 C69 (compound per MIL-P-5315). Size dash numbers correspond with AS 568 series.

MS 29561 C83 (compound per MIL-R-7362). Size dash numbers correspond with AS 568 series.

MS 33666 Size dash numbers correspond with AS 568 series.

MS 33668 Size dash numbers correspon with AS 568 tube fitting gasket series.

MIL-I-45208 Quality requirements. National complies.

MIL-C-45662 Quality requirements. National complies.

MIL-R-83248 Class 1: V14. Class 2: V23.

M 83248/1 V14 (compound per MIL-R-83248, Class 1). Size dash numbers correspond with AS 568 series.

M 83248/2 V23 (compound per MIL-R-83248, Class 2). Size dash numbers correspond with AS 568 series.

MIL-P-83461 D7 MIL-R-83485 V20

MS 90064 Dash three size: C65 (compound per MIL-P-5516).

Otherwise,

Waveguide Service: S64 (compound per ZZ-R-765, Class 2B, Grade 50). Dummy Loads: S59 (compound per AMS 3304). Sizes:

| Series<br>Number | Inside Diameter<br>Inches(mm) | Tolerance±<br>Inches(mm) | Se        | ection Diameter<br>Inches(mm) | Tolerance±<br>Inches(mm) |
|------------------|-------------------------------|--------------------------|-----------|-------------------------------|--------------------------|
| 3                | Th                            | is size is as spec       | ified by  | size AS 568-115               | V-E                      |
| 10               | Th                            | is size is as spec       | ified by  | size AS 568-013               |                          |
| 11               | .575(14.61)                   | 1 .010(.25)              | 1         | .060(1.52)                    | .003(.08)                |
| 12               | Th                            | is size is as spec       | ified by  | size AS 568-213               |                          |
| 13               | 1.338(33.99)                  | .006(.15)                | 1         | .092(2.34)                    | .003(.08)                |
| 14               | 1.550(39.37)                  | .010(.25)                |           | .092(2.34)                    | .003(.08)                |
| 15               | Th                            | is size is as spec       | ified by  | size AS 568-227               |                          |
| 16               | 2.683(68.15)                  | .015(.38)                | 1         | .115(2.92)                    | .005(.13)                |
| 17               | Th                            | is size is as spec       | cified by | size AS 568-346               |                          |

AN 123856 through AN 123934 B14 (compound per AMS 7274). O-Ring sizes correspond with AS 568 but dash numbers are different. Interchange:

| Series<br>Number | AS<br>568 | Series<br>Number | AS<br>568 | Series<br>Number | AS<br>568 | Series<br>Number | AS<br>568 |
|------------------|-----------|------------------|-----------|------------------|-----------|------------------|-----------|
| 123856           | -006      | 123876           | -216      | 123896           | -236      | 123916           | -256      |
| 123857           | -007      | 123877           | -217      | 123897           | -237      | 123917           | -257      |
| 123858           | -008      | 123878           | -218      | 123898           | -238      | 123918           | -258      |
| 123859           | -009      | 123879           | -219      | 123899           | -239      | 123919           | -259      |
| 123860           | -010      | 123880           | -220      | 123900           | -240      | 123920           | -260      |
| 123861           | -011      | 123881           | -221      | 123901           | -241      | 123921           | -261      |
| 123862           | -012      | 123882           | -222      | 123902           | -242      | 123922           | -262      |
| 123863           | -110      | 123883           | -223      | 123903           | -243      | 123923           | -263      |
| 123864           | -111      | 123884           | -224      | 123904           | -244      | 123924           | -264      |
| 123865           | -112      | 123885           | -225      | 123905           | -245      | 123925           | -265      |
| 123866           | -113      | 123886           | -226      | 123906           | -246      | 123926           | -266      |
| 123867           | -114      | 123887           | -227      | 123907           | -247      | 123927           | -267      |
| 123868           | -115      | 123888           | -228      | 123908           | -248      | 123928           | -268      |
| 123869           | -116      | 123889           | -229      | 123909           | -249      | 123929           | -269      |
| 123870           | -210      | 123890           | -230      | 123910           | -250      | 123930           | -270      |
| 123871           | -211      | 123891           | -231      | 123911           | -251      | 123931           | -271      |
| 123872           | -212      | 123892           | -232      | 123912           | -252      | 123932           | -272      |
| 123873           | -213      | 123893           | -233      | 123913           | -253      | 123933           | -273      |
| 123874           | -214      | 123894           | -234      | 123914           | -254      | 123934           | -274      |
| 123875           | -215      | 123895           | -235      | 123915           | -255      |                  |           |

AN 123956 through AN 124034 B17 (compound per AMS 7270). O-Ring sizes correspond with AS 568 but dash numbers are different. Interchange:

|     | Series<br>Iumber | AS<br>568 | Series<br>Number | AS<br>568 | Series<br>Number | AS<br>568 | Series<br>Number | AS<br>568 |
|-----|------------------|-----------|------------------|-----------|------------------|-----------|------------------|-----------|
| 1   | 23956            | -006      | 123976           | -216      | 123996           | -236      | 124016           | -256      |
| 1   | 23957            | -007      | 123977           | -217      | 123997           | -237      | 124017           | -257      |
| 1   | 23958            | -008      | 123978           | -218      | 123998           | -238      | 124018           | -258      |
| 1   | 23959            | -009      | 123979           | -219      | 123999           | -239      | 124019           | -259      |
| 1   | 23960            | -010      | 123980           | -220      | 124000           | -240      | 124020           | -260      |
| 1   | 23961            | -011      | 123981           | -221      | 124001           | -241      | 124021           | -261      |
| 1   | 23962            | -012      | 123982           | -222      | 124002           | -242      | 124022           | -262      |
| 1   | 23963            | -110      | 123983           | -223      | 124003           | -243      | 124023           | -263      |
| -1  | 23964            | -111      | 123984           | -224      | 124004           | -244      | 124024           | -264      |
| 1   | 23965            | -112      | 123985           | -225      | 124005           | -245      | 124025           | -265      |
| 1   | 23966            | -113      | 123986           | -226      | 124006           | -246      | 124026           | -266      |
| 1   | 23967            | -114      | 123987           | -227      | 124007           | -247      | 124027           | -267 -    |
| 1   | 23968            | -115      | 123988           | -228      | 124008           | -248      | 124028           | -268      |
| 1   | 23969            | -116      | 123989           | -229      | 124009           | -249      | 124029           | -269      |
| 1   | 23970            | -210      | 123990           | -230      | 124010           | -250      | 124030           | -270      |
| - 1 | 23971            | -211      | 123991           | -231      | 124011           | -251      | 124031           | -271      |
| 1   | 23972            | -212      | 123992           | -232      | 124012           | -252      | 124032           | -272      |
| 1   | 23973            | -213      | 123993           | -233      | 124013           | -253      | 124033           | -273      |
| 1   | 23974            | -214      | 123994           | -234      | 124014           | -254      | 124034           | -274      |
| 1   | 23975            | -215      | 123995           | -235      | 124015           | -255      | ************     |           |

COLOR

National silicone compounds are usually red, fluorosilicone is blue and most other compounds are black. Several exceptions are listed here. Upon request, O-Rings of any National compound may be furnished with surface color marking to provide positive identification prior to assembly.

| Hardness °A, Polymer                 | National<br>Com- |
|--------------------------------------|------------------|
| Brown                                | pound            |
| 50 SILICONE                          | S79              |
| 70 SILICONE                          | S60              |
| 60 FLUOROCARBON<br>(Viton, Fluorel*) | V16              |
| 90 FLUOROCARBON<br>(Viton, Fluorel*) | V9               |
| Grey<br>85 HYPALON*                  | H11              |

|                                                                                                   |                                                                                                                              | Pink<br>70 SILICONE                                                               | S82                      |
|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------|
|                                                                                                   |                                                                                                                              | Red<br>75 FLUOROCARBON<br>(Viton, Fluorel*)                                       | V15                      |
|                                                                                                   |                                                                                                                              | <b>White</b><br>70 NITRILE (Buna N)                                               | C43                      |
| CYLINDER LINER For sealing wet cylinder line                                                      | rs in diesel engines.                                                                                                        | 70 SILICONE                                                                       | S82                      |
| dioxide and other gases.                                                                          | ociated with sealing carbon                                                                                                  | 70 NITRILE (Buna N)                                                               | C47                      |
| <b>DRIVE</b> For use as low-torque drive b                                                        | pelt or drive wheel.                                                                                                         | 70 ETHYLENE-<br>PROPYLENE                                                         | E50                      |
| ments. Compound C43 is wi<br>furnish O-Rings approved by<br>ture (USDA) and National Sa           | Administration (FDA) require-<br>hite color. National can also<br>VU.S. Department of Agricul-<br>nitation Foundation (NSF). | 70 NITRILE (Buna N)<br>70 NITRILE (Buna N)                                        | C22<br>C43               |
| FRICTION Compounds containing he graphite or molybdenum dis                                       |                                                                                                                              | 60 NITRILE (Buna N)<br>70 NITRILE (Buna N)<br>90 NITRILE (Buna N)<br>70 NEOPRENE* | C77<br>C46<br>C78<br>N32 |
| mended for most application<br>ly swell resistant and may sh                                      | nts. Compound C9 is recoms. Compound C84 is extremenrink if permitted to dry.                                                | 70 NITRILE (Buna N)<br>70 NITRILE (Buna N)                                        | C9<br>C84                |
| HOT AIR Capable of sustained service                                                              | e at 527°F (275°C).                                                                                                          | 60 SILICONE<br>70 SILICONE                                                        | S53<br>S54               |
| LOW TEMPERATURE<br>Flexible at - 150 °F (- 101 °C                                                 | C).                                                                                                                          | 70 SILICONE<br>50 SILICONE                                                        | S32<br>S77               |
| PERMEATION Resistant to gas permeation                                                            | •<br>s                                                                                                                       | 70 BUTYL<br>80 EPICHLORO-<br>HYDRIN                                               | J31<br>Z8                |
| plastic.                                                                                          | surface of polycarbonate                                                                                                     | 70 NITRILE (Buna N)                                                               | C56                      |
| radiation cumulative dosage                                                                       |                                                                                                                              | 70 ETHYLENE-<br>PROPYLENE                                                         | E50                      |
| and C9 for service following: Anhydrous Ammonia Fuel Oils Gasoline Kerosene Natural/LP gas Naptha | sts National Compounds B46                                                                                                   | 70 NITRILE (Buna N)<br>70 NITRILE (Buna N)                                        | C9<br>B46                |
| VACUUM<br>Low permeation and out-gas                                                              | sing.                                                                                                                        | 70 BUTYL<br>75 FLUOROCARBON<br>(Viton, Fluorel*)                                  | J31<br>V14               |

### FRACTIONAL (INCH) SIZES

#### REFERENCE ONLY

AS568 dash number appears to right of O-Ring inside diameter (I.D.) and below sectional diameter.

See table beginning on page 31 for actual dimensions and tolerances.

| SECTION |      |      |     | SECT    | ION    |      |      |     |       | SECTIO | N     |      |     |      |     |
|---------|------|------|-----|---------|--------|------|------|-----|-------|--------|-------|------|-----|------|-----|
| I.D.    | 1/16 | 3/32 | 1/8 | 3/16    | I.D.   | 1/16 | 3/12 | 1/8 | 3/16  | 1/4    | I.D.  | 3/22 | 1/4 | 3/16 | 1/4 |
| 1/32    | 001* |      |     |         | 23/16  | 111  | 139  |     | 10000 |        | 7     | 167  | 262 | 365  | 441 |
| 3/64    | 002* |      |     |         | 21/4   | 035  | 140  | 228 | 331   |        | 71/4  | 168  | 263 | 366  | 442 |
| 1/16    | 003  | 102  |     |         | 25/16  |      | 141  |     | 0.550 |        | 71/2  | 169  | 264 | 367  | 443 |
| 5/64    | 004  |      |     |         | 23/8   | 036  | 142  | 229 | 332   |        | 73/4  | 170  | 265 | 368  | 444 |
| 3/32    | 005  | 103  |     |         | 27/16  |      | 143  |     |       |        | 8     | 171  | 266 | 369  | 445 |
| 1/8     | 006  | 104  |     |         | 21/2   | 037  | 144  | 230 | 333   |        | 81/4  | 172  | 267 | 370  |     |
| 5/32    | 007  | 105  |     |         | 2%16   |      | 145  |     |       |        | 81/2  | 173  | 268 | 371  | 446 |
| 3/16    | 800  | 106  | 201 |         | 25/8   | 038  | 146  | 231 | 334   |        | 83/4  | 174  | 269 | 372  |     |
| 7/32    | 009  | 107  |     |         | 211/16 |      | 147  |     |       |        | 9     | 175  | 270 | 373  | 447 |
| 1/4     | 010  | 108  | 202 |         | 23/4   | 039  | 148  | 232 | 335   |        | 91/4  | 176  | 271 | 374  |     |
| 5/16    | 011  | 109  | 203 |         | 213/16 |      | 149  |     |       |        | 91/2  | 177  | 272 | 375  | 448 |
| 3/8     | 012  | 110  | 204 |         | 21/8   | 040  | 150  | 233 | 336   |        | 93/4  | 178  | 273 | 376  |     |
| 7/16    | 013  | 111  | 205 | 309     | 3      | 041  | 151  | 234 | 337   |        | 10    |      | 274 | 377  | 449 |
| 1/2     | 014  | 112  | 206 | 310     | 31/8   |      |      | 235 | 338   |        | 101/2 |      | 275 | 378  | 450 |
| %16     | 015  | 113  | 207 | 311     | 31/4   | 042  | 152  | 236 | 339   |        | 11    |      | 276 | 379  | 451 |
| 5/8     | 016  | 114  | 208 | 312     | 33/8   |      |      | 237 | 340   |        | 111/2 |      | 277 | 380  | 452 |
| 11/16   | 017  | 115  | 209 | 313     | 31/2   | 043  | 153  | 238 | 341   |        | 12    |      | 278 | 381  | 453 |
| 3/4     | 018  | 116  | 210 | 314     | 35/8   |      |      | 239 | 342   |        | 121/2 |      |     |      | 454 |
| 13/16   | 019  | 117  | 211 | 315     | 33/4   | 044  | 154  | 240 | 343   |        | 13    |      | 279 | 382  | 455 |
| 1/8     | 020  | 118  | 212 | 316     | 31/8   |      |      | 241 | 344   |        | 131/2 |      |     |      | 456 |
| 15/16   | 021  | 119  | 213 | 317     | 4      | 045  | 155  | 242 | 345   |        | 14    |      | 280 | 383  | 457 |
| 1       | 022  | 120  | 214 | 318     | 41/8   |      |      | 243 | 346   |        | 141/2 |      |     |      | 458 |
| 11/16   | 023  | 121  | 215 | 319     | 41/4   | 046  | 156  | 244 | 347   |        | 15    |      | 281 | 384  | 459 |
| 11/8    | 024  | 122  | 216 | 320     | 43/8   |      |      | 245 | 348   |        | 151/2 |      |     |      | 460 |
| 13/16   | 025  | 123  | 217 | 321     | 41/2   | 047  | 157  | 246 | 349   | 425    | 16    |      | 282 | 385  | 461 |
| 11/4    | 026  | 124  | 218 | 322     | 45/8   |      |      | 247 | 350   | 426    | 161/2 |      |     |      | 462 |
| 15/16   | 027  | 125  | 219 | 323     | 43/4   | 048  | 158  | 248 | 351   | 427    | 17    |      | 283 | 386  | 463 |
| 13/8    | 028  | 126  | 220 | 324     | 41/8   |      |      | 249 | 352   | 428    | 171/2 |      |     |      | 464 |
| 17/16   |      | 127  | 221 |         | 5      | 049  | 159  | 250 | 353   | 429    | 18    |      | 284 | 387  | 465 |
| 11/2    | 029  | 128  | 222 | 325     | 51/8   |      |      | 251 | 354   | 430    | 181/2 |      |     |      | 466 |
| 1%16    |      | 129  |     |         | 51/4   | 050  | 160  | 252 | 355   | 431    | 19    |      |     | 388  | 467 |
| 15/8    | 030  | 130  | 223 | 326     | 53/8   |      |      | 253 | 356   | 432    | 191/2 |      |     |      | 468 |
| 111/16  |      | 131  |     |         | 51/2   |      | 161  | 254 | 357   | 433    | 20    |      |     | 389  | 469 |
| 13/4    | 031  | 132  | 224 | 327     | 55/8   |      |      | 255 | 358   | 434    | 21    |      |     | 390  | 470 |
| 113/16  |      | 133  |     |         | 53/4   |      | 162  | 256 | 359   | 435    | 22    |      |     | 391  | 471 |
| 11/8    | 032  | 134  | 225 | 328     | 51/8   |      |      | 257 | 360   | 436    | 23    |      |     | 392  | 472 |
| 115/16  |      | 135  |     | 7       | 6      |      | 163  | 258 | 361   | 437    | 24    |      |     | 393  | 473 |
| 2       | 033  | 136  | 226 | 329     | 61/4   |      | 164  | 259 | 362   | 438    | 25    |      |     | 394  | 474 |
| 21/16   |      | 137  |     | 1000000 | 61/2   |      | 165  | 260 | 363   | 439    | 26    |      |     | 395  | 475 |
| 21/8    | 034  | 138  | 227 | 330     | 63/4   |      | 166  | 261 | 364   | 440    |       |      |     |      |     |

<sup>\*</sup>Section diameter of AS568-001 is 1/32. Section diameter of AS568-002 is 3/64.

## **O-RING DIMENSIONS**

| STANDARD<br>SIZE SERIES                           |                                                                                                                                                                    | INC                                       | HES                                  | MILL                                       | IMETERS                         |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------|--------------------------------------------|---------------------------------|
| NUMBER<br>(AS568)                                 | Nominal<br>I.D.                                                                                                                                                    |                                           | Tolerance<br>±                       |                                            | Tolerance<br>±                  |
| 004-050 Cross s                                   | section dia                                                                                                                                                        | meter = 0.                                | 070 ± 0.003                          | in. (1.78 ±                                | 0.08mm)                         |
| AS-001*<br>AS-002*<br>AS-003*<br>AS-004<br>AS-005 | 1/ <sub>32</sub><br>3/ <sub>64</sub><br>1/ <sub>16</sub><br>5/ <sub>64</sub><br>3/ <sub>32</sub>                                                                   | .029<br>.042<br>.056<br>.070<br>.101      | .004<br>.004<br>.004<br>.005         | 0.74<br>1.07<br>1.42<br>1.78<br>2.57       | .08<br>.08<br>.08<br>.13        |
| AS-006<br>AS-007<br>AS-008<br>AS-009<br>AS-010    | 1/8<br>5/32<br>3/16<br>7/32<br>1/4                                                                                                                                 | .114<br>.145<br>.176<br>.208<br>.239      | .005<br>.005<br>.005<br>.005<br>.005 | 2.90<br>3.68<br>4.47<br>5.28<br>6.07       | .13<br>.13<br>.13<br>.13<br>.13 |
| AS-011<br>AS-012<br>AS-013<br>AS-014<br>AS-015    | 5/16<br>3/8<br>7/16<br>1/2<br>9/16                                                                                                                                 | .301<br>.364<br>.426<br>.489<br>.551      | .005<br>.005<br>.005<br>.005         | 7.65<br>9.25<br>10.82<br>12.42<br>14.00    | .13<br>.13<br>.13<br>.13<br>.18 |
| AS-016<br>AS-017<br>AS-018<br>AS-019<br>AS-020    | 5/8<br>11/16<br>3/4<br>13/16<br>7/8                                                                                                                                | .614<br>.676<br>.739<br>.801<br>.864      | .009<br>.009<br>.009<br>.009         | 15.60<br>17.17<br>18.77<br>20.35<br>21.95  | .23<br>.23<br>.23<br>.23<br>.23 |
| AS-021<br>AS-022<br>AS-023<br>AS-024<br>AS-025    | 15/ <sub>16</sub><br>1<br>1 <sup>1</sup> / <sub>16</sub><br>1 <sup>1</sup> / <sub>8</sub><br>1 <sup>3</sup> / <sub>16</sub>                                        | .926<br>.989<br>1.051<br>1.114<br>1.176   | .009<br>.010<br>.010<br>.010<br>.011 | 23.52<br>25.12<br>26.70<br>28.30<br>29.87  | .23<br>.25<br>.25<br>.25<br>.25 |
| AS-026<br>AS-027<br>AS-028<br>AS-029<br>AS-030    | 1 <sup>1</sup> / <sub>4</sub><br>1 <sup>5</sup> / <sub>16</sub><br>1 <sup>3</sup> / <sub>8</sub><br>1 <sup>1</sup> / <sub>2</sub><br>1 <sup>5</sup> / <sub>8</sub> | 1.239<br>1.301<br>1.364<br>1.489<br>1.614 | .011<br>.011<br>.013<br>.013<br>.013 | 31.47<br>33.05<br>34.65<br>37.82<br>41.00  | .28<br>.28<br>.33<br>.33        |
| AS-031<br>AS-032<br>AS-033<br>AS-034<br>AS-035    | 1 <sup>3</sup> / <sub>4</sub><br>1 <sup>7</sup> / <sub>8</sub><br>2<br>2 <sup>1</sup> / <sub>8</sub><br>2 <sup>1</sup> / <sub>4</sub>                              | 1.739<br>1.864<br>1.989<br>2.114<br>2.239 | .015<br>.015<br>.018<br>.018<br>.018 | 44.17<br>47.35<br>50.52<br>53.70<br>56.87  | .38<br>.38<br>.46<br>.46        |
| AS-036<br>AS-037<br>AS-038<br>AS-039<br>AS-040    | 2 <sup>3</sup> / <sub>8</sub> 2 <sup>1</sup> / <sub>2</sub> 2 <sup>5</sup> / <sub>8</sub> 2 <sup>1</sup> / <sub>4</sub> 2 <sup>7</sup> / <sub>8</sub>              | 2.364<br>2.489<br>2.614<br>2.739<br>2.864 | .018<br>.018<br>.020<br>.020<br>.020 | 60.05<br>63.22<br>66.40<br>69.57<br>72.75  | .46<br>.46<br>.51<br>.51        |
| AS-041<br>AS-042<br>AS-043<br>AS-044<br>AS-045    | 3<br>3 <sup>1</sup> / <sub>4</sub><br>3 <sup>1</sup> / <sub>2</sub><br>3 <sup>3</sup> / <sub>4</sub>                                                               | 2.989<br>3.239<br>3.489<br>3.739<br>3.989 | .024<br>.024<br>.024<br>.027<br>.027 | 75.92<br>82.27<br>88.62<br>94.97<br>101.32 | .61<br>.61<br>.61<br>.69<br>.69 |

<sup>\*</sup>Cross section diameters: 001 = 0.040; 002 = 0.050; 003 = 0.060 in.

| STANDARD<br>SIZE SERIES |                                                                  | INC            | HES            | MILLIMETERS      |                |  |
|-------------------------|------------------------------------------------------------------|----------------|----------------|------------------|----------------|--|
| NUMBER<br>(AS568)       | Nominal<br>I.D.                                                  |                | Tolerance<br>± |                  | Tolerance<br>± |  |
| 004-050 Cross           | section dia                                                      | ameter = 0     | .070 ± 0.003   | in. (1.78 ±      | 0.08mm)        |  |
| AS-046                  | 41/4                                                             | 4.239          | .030           | 107.67           | .76            |  |
| AS-047                  | 41/2                                                             | 4.489          | .030           | 114.02           | .76            |  |
| AS-048<br>AS-049        | 4 <sup>3</sup> / <sub>4</sub> 5                                  | 4.739          | .030           | 120.37<br>126.72 | .76            |  |
| AS-049<br>AS-050        | 5 <sup>1</sup> / <sub>4</sub>                                    | 4.989<br>5.239 | .037<br>.037   | 133.07           | .94<br>.94     |  |
| 102-178 Cross           |                                                                  |                |                |                  |                |  |
| AS-102                  | 1/16                                                             | .049           | .005           | 1.24             | .10            |  |
| AS-103                  | 3/32                                                             | .081           | .005           | 2.06             | .13            |  |
| AS-104                  | 1/8                                                              | .112           | .005           | 2.84             | .13            |  |
| AS-105<br>AS-106        | 5/32<br>3/16                                                     | .143<br>.174   | .005<br>.005   | 3.63<br>4.42     | .13<br>.13     |  |
|                         |                                                                  |                |                |                  |                |  |
| AS-107<br>AS-108        | 7/32<br>1/4                                                      | .206<br>.237   | .005<br>.005   | 5.23<br>6.02     | .13<br>.13     |  |
| AS-109                  | 5/16                                                             | .299           | .005           | 7.59             | .13            |  |
| AS-110                  | 3/8                                                              | .362           | .005           | 9.19             | .13            |  |
| AS-111                  | 7/16                                                             | .424           | .005           | 10.77            | .13            |  |
| AS-112<br>AS-113        | 1/ <sub>2</sub><br>9/ <sub>16</sub>                              | .487<br>.549   | .005           | 12.37<br>13.94   | .13<br>.18     |  |
| AS-113<br>AS-114        | 5/8                                                              | .612           | .007           | 15.54            | .23            |  |
| AS-115                  | 11/16                                                            | .674           | .009           | 17.12            | .23            |  |
| AS-116                  | 3/4                                                              | .737           | .009           | 18.72            | .23            |  |
| AS-117                  | 13/16                                                            | .799           | .010           | 20.30            | .25            |  |
| AS-118<br>AS-119        | 7/8<br>15/16                                                     | .862<br>.924   | .010<br>.010   | 21.89<br>23.47   | .25<br>.25     |  |
| AS-120                  | 1                                                                | .987           | .010           | 25.07            | .25            |  |
| AS-121                  | 11/16                                                            | 1.049          | .010           | 26.64            | .25            |  |
| AS-122                  | 11/8                                                             | 1.112          | .010           | 28.24            | .25            |  |
| AS-123<br>AS-124        | 1 <sup>3</sup> / <sub>16</sub><br>1 <sup>1</sup> / <sub>4</sub>  | 1.174<br>1.237 | .012<br>.012   | 29.82<br>31.42   | .30<br>.30     |  |
| AS-125                  | 15/16                                                            | 1.299          | .012           | 32.99            | .30            |  |
| AS-126                  | 13/8                                                             | 1.362          | .012           | 34.59            | .30            |  |
| AS-127                  | 17/16                                                            | 1.424          | .012           | 36.17            | .30            |  |
| AS-128<br>AS-129        | 1 <sup>1</sup> / <sub>2</sub><br>1 <sup>9</sup> / <sub>16</sub>  | 1.487<br>1.549 | .012<br>.015   | 37.77<br>39.34   | .30<br>.38     |  |
| AS-130                  | 15/8                                                             | 1.612          | .015           | 40.94            | .38            |  |
| AS-131                  | 111/16                                                           | 1.674          | .015           | 42.52            | .38            |  |
| AS-132                  | 13/4                                                             | 1.737          | .015           | 44.12            | .38            |  |
| AS-133<br>AS-134        | 1 <sup>13</sup> / <sub>16</sub><br>1 <sup>7</sup> / <sub>8</sub> | 1.799<br>1.862 | .015<br>.015   | 45.69<br>47.29   | .38<br>.38     |  |
| AS-135                  | 115/16                                                           | 1.925          | .017           | 48.90            | .43            |  |
| AS-136                  | 2                                                                | 1.987          | .017           | 50.47            | .43            |  |
| AS-137                  | 21/16                                                            | 2.050          | .017           | 52.07            | .43            |  |
| AS-138                  | 21/8                                                             | 2.112          | .017           | 53.64            | .43            |  |
| AS-139<br>AS-140        | $2^{3/16}$ $2^{1/4}$                                             | 2.175<br>2.237 | .017<br>.017   | 55.25<br>56.82   | .43<br>.43     |  |
| AS-141                  | 25/16                                                            | 2.300          | .020           | 58.42            | .51            |  |
|                         |                                                                  |                |                |                  |                |  |

| STANDARD<br>SIZE SERIES                        |                                                                                                                                       | INC                                       | HES                                  | MILLIMETERS                                 |                          |  |
|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------|---------------------------------------------|--------------------------|--|
|                                                | Nominal                                                                                                                               | Inside                                    | Tolerance                            | Inside                                      | Tolerance                |  |
|                                                | I.D.                                                                                                                                  | Diameter                                  | ±                                    | Diameter                                    | ±                        |  |
| 102-178 Cross                                  |                                                                                                                                       |                                           |                                      |                                             | 9-0                      |  |
| AS-142                                         | 2 <sup>3</sup> / <sub>8</sub>                                                                                                         | 2.362                                     | .020                                 | 59.99                                       | .51                      |  |
| AS-143                                         | 2 <sup>7</sup> / <sub>16</sub>                                                                                                        | 2.425                                     | .020                                 | 61.60                                       | .51                      |  |
| AS-144                                         | 2 <sup>1</sup> / <sub>2</sub>                                                                                                         | 2.487                                     | .020                                 | 63.17                                       | .51                      |  |
| AS-145                                         | 2 <sup>9</sup> / <sub>16</sub>                                                                                                        | 2.550                                     | .020                                 | 64.77                                       | .51                      |  |
| AS-146                                         | 2 <sup>5</sup> / <sub>8</sub>                                                                                                         | 2.612                                     | .020                                 | 66.34                                       | .51                      |  |
| AS-147                                         | 2 <sup>11</sup> / <sub>16</sub>                                                                                                       | 2.675                                     | .022                                 | 67.95                                       | .56                      |  |
| AS-148                                         | 2 <sup>3</sup> / <sub>4</sub>                                                                                                         | 2.737                                     | .022                                 | 69.52                                       | .56                      |  |
| AS-149                                         | 2 <sup>13</sup> / <sub>16</sub>                                                                                                       | 2.800                                     | .022                                 | 71.12                                       | .56                      |  |
| AS-150                                         | 2 <sup>7</sup> / <sub>8</sub>                                                                                                         | 2.862                                     | .022                                 | 72.69                                       | .56                      |  |
| AS-151                                         | 3                                                                                                                                     | 2.987                                     | .024                                 | 75.87                                       | .61                      |  |
| AS-152<br>AS-153<br>AS-154<br>AS-155<br>AS-156 | 3 <sup>1</sup> / <sub>4</sub><br>3 <sup>1</sup> / <sub>2</sub><br>3 <sup>3</sup> / <sub>4</sub><br>4<br>4 <sup>1</sup> / <sub>4</sub> | 3.237<br>3.487<br>3.737<br>3.987<br>4.237 | .024<br>.024<br>.028<br>.028<br>.030 | 82.22<br>88.57<br>94.92<br>101.27<br>107.62 | .61<br>.61<br>.71<br>.71 |  |
| AS-157                                         | 4 <sup>1</sup> / <sub>2</sub>                                                                                                         | 4.487                                     | .030                                 | 113.97                                      | .76                      |  |
| AS-158                                         | 4 <sup>3</sup> / <sub>4</sub>                                                                                                         | 4.737                                     | .030                                 | 120.32                                      | .76                      |  |
| AS-159                                         | 5                                                                                                                                     | 4.987                                     | .035                                 | 126.67                                      | .89                      |  |
| AS-160                                         | 5 <sup>1</sup> / <sub>4</sub>                                                                                                         | 5.237                                     | .035                                 | 133.02                                      | .89                      |  |
| AS-161                                         | 5 <sup>1</sup> / <sub>2</sub>                                                                                                         | 5.487                                     | .035                                 | 139.37                                      | .89                      |  |
| AS-162                                         | 5 <sup>3</sup> / <sub>4</sub>                                                                                                         | 5.737                                     | .035                                 | 145.72                                      | .89                      |  |
| AS-163                                         | 6                                                                                                                                     | 5.987                                     | .035                                 | 152.07                                      | .89                      |  |
| AS-164                                         | 6 <sup>1</sup> / <sub>4</sub>                                                                                                         | 6.237                                     | .040                                 | 158.42                                      | 1.02                     |  |
| AS-165                                         | 6 <sup>1</sup> / <sub>2</sub>                                                                                                         | 6.487                                     | .040                                 | 164.77                                      | 1.02                     |  |
| AS-166                                         | 6 <sup>3</sup> / <sub>4</sub>                                                                                                         | 6.737                                     | .040                                 | 171.12                                      | 1.02                     |  |
| AS-167                                         | 7                                                                                                                                     | 6.987                                     | .040                                 | 177.47                                      | 1.02                     |  |
| AS-168                                         | 7 <sup>1</sup> / <sub>4</sub>                                                                                                         | 7.237                                     | .045                                 | 183.82                                      | 1.14                     |  |
| AS-169                                         | 7 <sup>1</sup> / <sub>2</sub>                                                                                                         | 7.487                                     | .045                                 | 190.17                                      | 1.14                     |  |
| AS-170                                         | 7 <sup>3</sup> / <sub>4</sub>                                                                                                         | 7.737                                     | .045                                 | 196.52                                      | 1.14                     |  |
| AS-171                                         | 8                                                                                                                                     | 7.987                                     | .045                                 | 202.87                                      | 1.14                     |  |
| AS-172                                         | 8 <sup>1</sup> / <sub>4</sub>                                                                                                         | 8.237                                     | .050                                 | 209.22                                      | 1.27                     |  |
| AS-173                                         | 8 <sup>1</sup> / <sub>2</sub>                                                                                                         | 8.487                                     | .050                                 | 215.57                                      | 1.27                     |  |
| AS-174                                         | 8 <sup>3</sup> / <sub>4</sub>                                                                                                         | 8.737                                     | .050                                 | 221.92                                      | 1.27                     |  |
| AS-175                                         | 9                                                                                                                                     | 8.987                                     | .050                                 | 228.27                                      | 1.27                     |  |
| AS-176                                         | 9 <sup>1</sup> / <sub>4</sub>                                                                                                         | 9.237                                     | .055                                 | 234.62                                      | 1.40                     |  |
| AS-177                                         | $9^{1/2}$ $9^{3/4}$                                                                                                                   | 9.487                                     | .055                                 | 240.97                                      | 1.40                     |  |
| AS-178                                         |                                                                                                                                       | 9.737                                     | .055                                 | 247.32                                      | 1.40                     |  |
| 201-284 Cross                                  |                                                                                                                                       |                                           |                                      |                                             | 550 5                    |  |
| AS-201                                         | 3/ <sub>16</sub> 1/ <sub>4</sub> 5/ <sub>16</sub>                                                                                     | .171                                      | .005                                 | 4.34                                        | .13                      |  |
| AS-202                                         |                                                                                                                                       | .234                                      | .005                                 | 5.94                                        | .13                      |  |
| AS-203                                         |                                                                                                                                       | .296                                      | .005                                 | 7.52                                        | .13                      |  |
| AS-204                                         | 3/8 7/16 1/2 9/16 5/8                                                                                                                 | .359                                      | .005                                 | 9.12                                        | .13                      |  |
| AS-205                                         |                                                                                                                                       | .421                                      | .005                                 | 10.69                                       | .13                      |  |
| AS-206                                         |                                                                                                                                       | .484                                      | .005                                 | 12.29                                       | .13                      |  |
| AS-207                                         |                                                                                                                                       | .546                                      | .007                                 | 13.87                                       | .18                      |  |
| AS-208                                         |                                                                                                                                       | .609                                      | .009                                 | 15.47                                       | .23                      |  |

| STANDARD                                       |                                                                                                                                                                     | INC                                       | HES                                  | MILLIMETERS                                    |                                 |  |
|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------|------------------------------------------------|---------------------------------|--|
| SIZE SERIES<br>NUMBER<br>(AS568)               | Nominal<br>I.D.                                                                                                                                                     | Inside<br>Diameter                        | Tolerance<br>±                       | ( e ( ) ( ) ( )                                | Tolerance<br>±                  |  |
| 201-284 Cross                                  | section dia                                                                                                                                                         | ameter = 0                                | .139 ± 0.004                         | in. (3.53 ±                                    | 0.10mm)                         |  |
| AS-209<br>AS-210<br>AS-211<br>AS-212<br>AS-213 | 11/ <sub>16</sub> 3/ <sub>4</sub> 13/ <sub>16</sub> 7/ <sub>8</sub> 15/ <sub>16</sub>                                                                               | .671<br>.734<br>.796<br>.859<br>.921      | .009<br>.010<br>.010<br>.010<br>.010 | 17.04<br>18.64<br>20.22<br>21.82<br>23.39      | .23<br>.25<br>.25<br>.25<br>.25 |  |
| AS-214<br>AS-215<br>AS-216<br>AS-217<br>AS-218 | 1<br>1 <sup>1</sup> / <sub>16</sub><br>1 <sup>1</sup> / <sub>8</sub><br>1 <sup>3</sup> / <sub>16</sub><br>1 <sup>1</sup> / <sub>4</sub>                             | .984<br>1.046<br>1.109<br>1.171<br>1.234  | .010<br>.010<br>.012<br>.012<br>.012 | 24.99<br>26.57<br>28.17<br>29.74<br>31.34      | .25<br>.25<br>.30<br>.30<br>.30 |  |
| AS-219<br>AS-220<br>AS-221<br>AS-222<br>AS-223 | 1 <sup>5</sup> / <sub>16</sub><br>1 <sup>3</sup> / <sub>8</sub><br>1 <sup>7</sup> / <sub>16</sub><br>1 <sup>1</sup> / <sub>2</sub><br>1 <sup>5</sup> / <sub>8</sub> | 1.296<br>1.359<br>1.421<br>1.484<br>1.609 | .012<br>.012<br>.012<br>.015<br>.015 | 32.92<br>34.52<br>36.09<br>37.69<br>40.87      | .30<br>.30<br>.30<br>.38<br>.38 |  |
| AS-224<br>AS-225<br>AS-226<br>AS-227<br>AS-228 | 1 <sup>3</sup> / <sub>4</sub><br>1 <sup>7</sup> / <sub>8</sub><br>2<br>2 <sup>1</sup> / <sub>8</sub><br>2 <sup>1</sup> / <sub>4</sub>                               | 1.734<br>1.859<br>1.984<br>2.109<br>2.234 | .015<br>.018<br>.018<br>.018<br>.020 | 44.04<br>47.22<br>50.39<br>53.57<br>56.74      | .38<br>.46<br>.46<br>.46<br>.51 |  |
| AS-229<br>AS-230<br>AS-231<br>AS-232<br>AS-233 | $2^{3/8}$ $2^{1/2}$ $2^{5/8}$ $2^{3/4}$ $2^{7/8}$                                                                                                                   | 2.359<br>2.484<br>2.609<br>2.734<br>2.859 | .020<br>.020<br>.020<br>.024<br>.024 | 59.92<br>63.09<br>66.27<br>69.44<br>72.62      | .51<br>.51<br>.51<br>.61<br>.61 |  |
| AS-234<br>AS-235<br>AS-236<br>AS-237<br>AS-238 | 3<br>3 <sup>1</sup> / <sub>8</sub><br>3 <sup>1</sup> / <sub>4</sub><br>3 <sup>3</sup> / <sub>8</sub><br>3 <sup>1</sup> / <sub>2</sub>                               | 2.984<br>3.109<br>3.234<br>3.359<br>3.484 | .024<br>.024<br>.024<br>.024<br>.024 | 75.79<br>78.97<br>82.14<br>85.32<br>88.49      | .61<br>.61<br>.61<br>.61        |  |
| AS-239<br>AS-240<br>AS-241<br>AS-242<br>AS-243 | 3 <sup>5</sup> / <sub>8</sub><br>3 <sup>3</sup> / <sub>4</sub><br>3 <sup>7</sup> / <sub>8</sub><br>4<br>4 <sup>1</sup> / <sub>8</sub>                               | 3.609<br>3.734<br>3.859<br>3.984<br>4.109 | .028<br>.028<br>.028<br>.028<br>.028 | 91.67<br>94.84<br>98.02<br>101.19<br>104.37    | .71<br>.71<br>.71<br>.71<br>.71 |  |
| AS-244<br>AS-245<br>AS-246<br>AS-247<br>AS-248 | 4 <sup>1</sup> / <sub>4</sub> 4 <sup>3</sup> / <sub>8</sub> 4 <sup>1</sup> / <sub>2</sub> 4 <sup>5</sup> / <sub>8</sub> 4 <sup>3</sup> / <sub>4</sub>               | 4.234<br>4.359<br>4.484<br>4.609<br>4.734 | .030<br>.030<br>.030<br>.030<br>.030 | 107.54<br>110.72<br>113.89<br>117.07<br>120.24 | .76<br>.76<br>.76<br>.76<br>.76 |  |
| AS-249<br>AS-250<br>AS-251<br>AS-252<br>AS-253 | 4 <sup>7</sup> / <sub>8</sub> 5 5 <sup>1</sup> / <sub>8</sub> 5 <sup>1</sup> / <sub>4</sub> 5 <sup>3</sup> / <sub>8</sub>                                           | 4.859<br>4.984<br>5.109<br>5.234<br>5.359 | .035<br>.035<br>.035<br>.035<br>.035 | 123.42<br>126.59<br>129.77<br>132.94<br>136.12 | .89<br>.89<br>.89<br>.89        |  |
|                                                |                                                                                                                                                                     |                                           |                                      |                                                |                                 |  |

| STANDARD                                                                                         |                                                                                                                                                                                                                                               | 71                                                                                     | orange Arrivation and                                        |                                                                                                  |                                                          |
|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| SIZE SERIES                                                                                      |                                                                                                                                                                                                                                               |                                                                                        | HES                                                          |                                                                                                  | METERS                                                   |
| NUMBER<br>(AS568)                                                                                | Nominal<br>I.D.                                                                                                                                                                                                                               | Diameter                                                                               | Tolerance<br>±                                               | Inside<br>Diameter                                                                               | Tolerance<br>±                                           |
| 309-395 Cross                                                                                    | section di                                                                                                                                                                                                                                    | ameter = 0                                                                             | .210 ± 0.005                                                 | in. (5.33 ±                                                                                      | 0.13mm)                                                  |
| AS-254<br>AS-255<br>AS-256<br>AS-257<br>AS-258<br>AS-259<br>AS-260<br>AS-261<br>AS-262<br>AS-263 | 5 <sup>1</sup> / <sub>2</sub><br>5 <sup>5</sup> / <sub>8</sub><br>5 <sup>3</sup> / <sub>4</sub><br>5 <sup>7</sup> / <sub>8</sub><br>6<br>6 <sup>1</sup> / <sub>4</sub><br>6 <sup>1</sup> / <sub>2</sub><br>6 <sup>3</sup> / <sub>4</sub><br>7 | 5.484<br>5.609<br>5.734<br>5.859<br>5.984<br>6.234<br>6.484<br>6.734<br>6.984<br>7.234 | .035<br>.035<br>.035<br>.035<br>.040<br>.040<br>.040<br>.040 | 139.29<br>142.47<br>145.64<br>148.82<br>151.99<br>158.34<br>164.69<br>171.04<br>177.39<br>183.74 | .89<br>.89<br>.89<br>.89<br>1.02<br>1.02<br>1.02<br>1.02 |
| AS-264<br>AS-265<br>AS-266<br>AS-267<br>AS-268                                                   | 7 <sup>1</sup> / <sub>2</sub><br>7 <sup>3</sup> / <sub>4</sub><br>8<br>8 <sup>1</sup> / <sub>4</sub><br>8 <sup>1</sup> / <sub>2</sub>                                                                                                         | 7.484<br>7.734<br>7.984<br>8.234<br>8.484                                              | .045<br>.045<br>.045<br>.050                                 | 190.09<br>196.44<br>202.79<br>209.14<br>215.49                                                   | 1.14<br>1.14<br>1.14<br>1.27<br>1.27                     |
| AS-269<br>AS-270<br>AS-271<br>AS-272<br>AS-273                                                   | 8 <sup>3</sup> / <sub>4</sub><br>9<br>9 <sup>1</sup> / <sub>4</sub><br>9 <sup>1</sup> / <sub>2</sub><br>9 <sup>3</sup> / <sub>4</sub>                                                                                                         | 8.734<br>8.984<br>9.234<br>9.484<br>9.734                                              | .050<br>.050<br>.055<br>.055                                 | 221.84<br>228.19<br>234.54<br>240.89<br>247.24                                                   | 1.27<br>1.27<br>1.40<br>1.40<br>1.40                     |
| AS-274<br>AS-275<br>AS-276<br>AS-277<br>AS-278                                                   | 10<br>10 <sup>1</sup> / <sub>2</sub><br>11<br>11 <sup>1</sup> / <sub>2</sub><br>12                                                                                                                                                            | 9.984<br>10.484<br>10.984<br>11.484<br>11.984                                          | .055<br>.055<br>.065<br>.065                                 | 253.59<br>266.29<br>278.99<br>291.69<br>304.39                                                   | 1.40<br>1.40<br>1.65<br>1.65<br>1.65                     |
| AS-279<br>AS-280<br>AS-281<br>AS-282<br>AS-283                                                   | 13<br>14<br>15<br>16<br>17                                                                                                                                                                                                                    | 12.984<br>13.984<br>14.984<br>15.955<br>16.955                                         | .065<br>.065<br>.065<br>.075<br>.080                         | 329.79<br>355.19<br>380.59<br>405.26<br>430.66                                                   | 1.65<br>1.65<br>1.65<br>1.91<br>2.03                     |
| AS-284                                                                                           | 18                                                                                                                                                                                                                                            | 17.955                                                                                 | .085                                                         | 456.06                                                                                           | 2.16                                                     |
| 309-395 Cross<br>AS-309<br>AS-310<br>AS-311<br>AS-312                                            | 7/16<br>1/2<br>9/16<br>5/8                                                                                                                                                                                                                    | .412<br>.475<br>.537<br>.600                                                           | .210 ± 0.005<br>.005<br>.005<br>.007<br>.009                 | 10.46<br>12.07<br>13.64<br>15.24                                                                 | .13<br>.13<br>.13<br>.18<br>.23                          |
| AS-313<br>AS-314<br>AS-315<br>AS-316<br>AS-317                                                   | 11/ <sub>16</sub> 3/ <sub>4</sub> 13/ <sub>16</sub> 7/ <sub>8</sub> 15/ <sub>16</sub>                                                                                                                                                         | .662<br>.725<br>.787<br>.850<br>.912                                                   | .009<br>.009<br>.009<br>.009                                 | 16.81<br>18.42<br>19.99<br>21.59<br>23.16                                                        | .23<br>.23<br>.23<br>.23<br>.23                          |
| AS-318<br>AS-319<br>AS-320<br>AS-321<br>AS-322                                                   | 1<br>1 <sup>1</sup> / <sub>16</sub><br>1 <sup>1</sup> / <sub>8</sub><br>1 <sup>3</sup> / <sub>16</sub><br>1 <sup>1</sup> / <sub>4</sub>                                                                                                       | .975<br>1.037<br>1.100<br>1.162<br>1.225                                               | .010<br>.010<br>.012<br>.012<br>.012                         | 24.77<br>26.34<br>27.94<br>29.51<br>31.12                                                        | .25<br>.25<br>.25<br>.28<br>.28                          |

| STANDARD                                       |                                                                                                                                                                    | INC                                       | HES                                  | MILLI                                          | METERS                               |
|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------|------------------------------------------------|--------------------------------------|
| SIZE SERIES<br>NUMBER<br>(AS568)               | Nominal<br>I.D.                                                                                                                                                    |                                           | Tolerance<br>±                       |                                                | Tolerance<br>±                       |
| 309-395 Cross                                  | section di                                                                                                                                                         | ameter = (                                | 0.210 ± 0.00                         | 5 in. (5.33 ±                                  | 0.13mm)                              |
| AS-323<br>AS-324<br>AS-325<br>AS-326<br>AS-327 | 1 <sup>5</sup> / <sub>16</sub><br>1 <sup>3</sup> / <sub>8</sub><br>1 <sup>1</sup> / <sub>2</sub><br>1 <sup>5</sup> / <sub>8</sub><br>1 <sup>3</sup> / <sub>4</sub> | 1.287<br>1.350<br>1.475<br>1.600<br>1.725 | .012<br>.012<br>.015<br>.015         | 32.69<br>34.29<br>37.47<br>40.64<br>43.82      | .28<br>.28<br>.38<br>.38             |
| AS-328<br>AS-329<br>AS-330<br>AS-331<br>AS-332 | 1 <sup>7</sup> /8<br>2<br>2 <sup>1</sup> /8<br>2 <sup>1</sup> / <sub>4</sub><br>2 <sup>3</sup> / <sub>8</sub>                                                      | 1.850<br>1.975<br>2.100<br>2.225<br>2.350 | .015<br>.018<br>.018<br>.018         | 46.99<br>50.17<br>53.34<br>56.52<br>59.69      | .38<br>.46<br>.46<br>.46<br>.46      |
| AS-333<br>AS-334<br>AS-335<br>AS-336<br>AS-337 | 2 <sup>1</sup> / <sub>2</sub><br>2 <sup>5</sup> / <sub>8</sub><br>2 <sup>3</sup> / <sub>4</sub><br>2 <sup>7</sup> / <sub>8</sub><br>3                              | 2.475<br>2.600<br>2.725<br>2.850<br>2.975 | .020<br>.020<br>.020<br>.020<br>.024 | 62.87<br>66.04<br>69.22<br>72.39<br>75.57      | .51<br>.51<br>.51<br>.51<br>.61      |
| AS-338<br>AS-339<br>AS-340<br>AS-341<br>AS-342 | 3 <sup>1</sup> / <sub>8</sub><br>3 <sup>1</sup> / <sub>4</sub><br>3 <sup>3</sup> / <sub>8</sub><br>3 <sup>1</sup> / <sub>2</sub><br>3 <sup>5</sup> / <sub>8</sub>  | 3.100<br>3.225<br>3.350<br>3.475<br>3.600 | .024<br>.024<br>.024<br>.024<br>.028 | 78.74<br>81.92<br>85.09<br>88.27<br>91.44      | .61<br>.61<br>.61<br>.61             |
| AS-343<br>AS-344<br>AS-345<br>AS-346<br>AS-347 | 3 <sup>3</sup> / <sub>4</sub><br>3 <sup>7</sup> / <sub>8</sub><br>4<br>4 <sup>1</sup> / <sub>8</sub><br>4 <sup>1</sup> / <sub>4</sub>                              | 3.725<br>3.850<br>3.975<br>4.100<br>4.225 | .028<br>.028<br>.028<br>.028<br>.030 | 94.62<br>97.79<br>100.97<br>104.14<br>107.32   | .71<br>.71<br>.71<br>.71<br>.76      |
| AS-348<br>AS-349<br>AS-350<br>AS-351<br>AS-352 | 4 <sup>3</sup> / <sub>8</sub><br>4 <sup>1</sup> / <sub>2</sub><br>4 <sup>5</sup> / <sub>8</sub><br>4 <sup>3</sup> / <sub>4</sub><br>4 <sup>7</sup> / <sub>8</sub>  | 4.350<br>4.475<br>4.600<br>4.725<br>4.850 | .030<br>.030<br>.030<br>.030<br>.030 | 110.49<br>113.67<br>116.84<br>120.02<br>123.19 | .76<br>.76<br>.76<br>.76             |
| AS-353<br>AS-354<br>AS-355<br>AS-356<br>AS-357 | 5<br>5 <sup>1</sup> / <sub>8</sub><br>5 <sup>1</sup> / <sub>4</sub><br>5 <sup>3</sup> / <sub>8</sub><br>5 <sup>1</sup> / <sub>2</sub>                              | 4.975<br>5.100<br>5.225<br>5.350<br>5.475 | .037<br>.037<br>.037<br>.037<br>.037 | 126.37<br>129.54<br>132.72<br>135.89<br>139.07 | .94<br>.94<br>.94<br>.94<br>.94      |
| AS-358<br>AS-359<br>AS-360<br>AS-361<br>AS-362 | 5 <sup>5</sup> / <sub>8</sub><br>5 <sup>3</sup> / <sub>4</sub><br>5 <sup>7</sup> / <sub>8</sub><br>6<br>6 <sup>1</sup> / <sub>4</sub>                              | 5.600<br>5.725<br>5.850<br>5.975<br>6.225 | .037<br>.037<br>.037<br>.037<br>.040 | 142.24<br>145.42<br>148.59<br>151.77<br>158.12 | .94<br>.94<br>.94<br>.94<br>1.02     |
| AS-363<br>AS-364<br>AS-365<br>AS-366<br>AS-367 | 6 <sup>1</sup> / <sub>2</sub><br>6 <sup>3</sup> / <sub>4</sub><br>7<br>7 <sup>1</sup> / <sub>4</sub><br>7 <sup>1</sup> / <sub>2</sub>                              | 6.475<br>6.725<br>6.975<br>7.225<br>7.475 | .040<br>.040<br>.040<br>.045<br>.045 | 164.47<br>170.82<br>177.17<br>183.52<br>189.87 | 1.02<br>1.02<br>1.02<br>1.14<br>1.14 |

| STANDARD<br>SIZE SERIES<br>NUMBER | Nominal                                                        | Inside           | HES<br>Tolerance | MILLIMETERS Inside Tolerance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|-----------------------------------|----------------------------------------------------------------|------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| (AS568)                           | I.D.                                                           | Diameter         | ±                | Diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ±                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 309-395 Cross<br>AS-368           | section di                                                     |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the same of th |  |
| AS-368<br>AS-369                  | 8                                                              | 7.725<br>7.975   | .045<br>.045     | 196.22<br>202.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.14<br>1.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| AS-370                            | 81/4                                                           | 8.225            | .050             | 208.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| AS-371                            | 81/2                                                           | 8.475            | .050             | 215.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| AS-372                            | 83/4                                                           | 8.725            | .050             | 221.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| AS-373                            | 9                                                              | 8.975            | .050             | 227.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| AS-374<br>AS-375                  | 91/ <sub>4</sub><br>91/ <sub>2</sub>                           | 9.225<br>9.475   | .055<br>.055     | 234.32<br>240.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.40<br>1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| AS-376                            | 93/4                                                           | 9.725            | .055             | 247.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| AS-377                            | 10                                                             | 9.975            | .055             | 253.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| AS-378                            | 101/2                                                          | 10.475           | .060             | 266.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| AS-379                            | 11                                                             | 10.975           | .060             | 278.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| AS-380<br>AS-381                  | 11 <sup>1</sup> / <sub>2</sub><br>12                           | 11.475<br>11.975 | .065<br>.065     | 291.47<br>304.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.65<br>1.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| AS-382                            | 13                                                             | 12.975           | .065             | 329.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| AS-383                            | 14                                                             | 13.975           | .070             | 354.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| AS-384                            | 15                                                             | 14.975           | .070             | 380.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| AS-385<br>AS-386                  | 16<br>17                                                       | 15.955           | .075<br>.080     | 405.26<br>430.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.91<br>2.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| AS-387                            | 18                                                             | 16.955<br>17.955 | .085             | 456.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| AS-388                            | 19                                                             | 18.955           | .090             | 481.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| AS-389                            | 20                                                             | 19.955           | .095             | 506.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| AS-390                            | 21                                                             | 20.955           | .095             | 532.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| AS-391<br>AS-392                  | 22<br>23                                                       | 21.955<br>22.940 | .100<br>.105     | 557.61<br>582.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.54<br>2.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| AS-393                            | 24                                                             | 23.940           | .110             | 608.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| AS-394                            | 25                                                             | 24.940           | .115             | 633.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| AS-395                            | 26                                                             | 25.940           | .120             | 658.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 425-475 Cross                     |                                                                |                  |                  | Acres de la companya del la companya de la companya |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| AS-425<br>AS-426                  | 4 <sup>1</sup> / <sub>2</sub><br>4 <sup>5</sup> / <sub>8</sub> | 4.475<br>4.600   | .033<br>.033     | 113.67<br>116.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .84<br>.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| AS-427                            | 43/4                                                           | 4.725            | .033             | 120.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| AS-428                            | 47/8                                                           | 4.850            | .033             | 123.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| AS-429                            | 5                                                              | 4.975            | .037             | 126.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| AS-430<br>AS-431                  | 5 <sup>1</sup> / <sub>8</sub><br>5 <sup>1</sup> / <sub>4</sub> | 5.100<br>5.225   | .037<br>.037     | 129.54<br>132.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .94<br>.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                   |                                                                |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| AS-432<br>AS-433                  | 5 <sup>3</sup> / <sub>8</sub><br>5 <sup>1</sup> / <sub>2</sub> | 5.350<br>5.475   | .037<br>.037     | 135.89<br>139.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .94<br>.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| AS-434                            | 55/8                                                           | 5.600            | .037             | 142.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| AS-435                            | $5^{3}/4$                                                      | 5.725            | .037             | 145.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| AS-436                            | 5 <sup>7</sup> /8                                              | 5.850            | .037             | 148.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| AS-437<br>AS-438                  | 6<br>6¹/₄                                                      | 5.975<br>6.225   | .037<br>.040     | 151.77<br>158.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .94<br>.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| AS-439                            | 61/2                                                           | 6.475            | .040             | 164.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| AS-440                            | $6^{3}/_{4}$                                                   | 6.725            | .040             | 170.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| AS-441                            | 7                                                              | 6.975            | .040             | 177.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |

| STANDARD<br>SIZE SERIES |                                                                                                                           | INC      | HES       | MILLIMETERS |           |  |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------|----------|-----------|-------------|-----------|--|
| NUMBER                  | Nominal                                                                                                                   | Inside   | Tolerance | Inside      | Tolerance |  |
| (AS568)                 | I.D.                                                                                                                      | Diameter | ±         | Diameter    | ±         |  |
|                         |                                                                                                                           |          | _         |             |           |  |
| 425-475 Cross           |                                                                                                                           |          |           |             | 0.15mm)   |  |
| AS-442                  | 7 <sup>1</sup> / <sub>4</sub> 7 <sup>1</sup> / <sub>2</sub> 7 <sup>3</sup> / <sub>4</sub> 8 8 <sup>1</sup> / <sub>2</sub> | 7.225    | .045      | 183.52      | 1.14      |  |
| AS-443                  |                                                                                                                           | 7.475    | .045      | 189.87      | 1.14      |  |
| AS-444                  |                                                                                                                           | 7.725    | .045      | 196.22      | 1.14      |  |
| AS-445                  |                                                                                                                           | 7.975    | .045      | 202.57      | 1.14      |  |
| AS-446                  |                                                                                                                           | 8.475    | .055      | 215.27      | 1.14      |  |
| AS-447                  | 9                                                                                                                         | 8.975    | .055      | 227.97      | 1.40      |  |
| AS-448                  | 9 <sup>1</sup> / <sub>2</sub>                                                                                             | 9.475    | .055      | 240.67      | 1.40      |  |
| AS-449                  | 10                                                                                                                        | 9.975    | .055      | 253.37      | 1.40      |  |
| AS-450                  | 10 <sup>1</sup> / <sub>2</sub>                                                                                            | 10.475   | .060      | 266.07      | 1.52      |  |
| AS-451                  | 11                                                                                                                        | 10.975   | .060      | 278.77      | 1.52      |  |
| AS-452                  | 11 <sup>1</sup> / <sub>2</sub>                                                                                            | 11.475   | .060      | 291.47      | 1.52      |  |
| AS-453                  | 12                                                                                                                        | 11.975   | .060      | 304.17      | 1.52      |  |
| AS-454                  | 12 <sup>1</sup> / <sub>2</sub>                                                                                            | 12.475   | .060      | 316.87      | 1.52      |  |
| AS-455                  | 13                                                                                                                        | 12.975   | .060      | 329.57      | 1.52      |  |
| AS-456                  | 13 <sup>1</sup> / <sub>2</sub>                                                                                            | 13.475   | .070      | 342.27      | 1.78      |  |
| AS-457                  | 14                                                                                                                        | 13.975   | .070      | 354.97      | 1.78      |  |
| AS-458                  | 14 <sup>1</sup> / <sub>2</sub>                                                                                            | 14.475   | .070      | 367.67      | 1.78      |  |
| AS-459                  | 15                                                                                                                        | 14.975   | .070      | 380.37      | 1.78      |  |
| AS-460                  | 15 <sup>1</sup> / <sub>2</sub>                                                                                            | 15.475   | .070      | 393.07      | 1.78      |  |
| AS-461                  | 16                                                                                                                        | 15.955   | .075      | 405.26      | 1.91      |  |
| AS-462                  | 16 <sup>1</sup> / <sub>2</sub>                                                                                            | 16.455   | .075      | 417.96      | 1.91      |  |
| AS-463                  | 17                                                                                                                        | 16.955   | .080      | 430.66      | 2.03      |  |
| AS-464                  | 17 <sup>1</sup> / <sub>2</sub>                                                                                            | 17.455   | .085      | 443.36      | 2.16      |  |
| AS-465                  | 18                                                                                                                        | 17.955   | .085      | 456.06      | 2.16      |  |
| AS-466                  | 18 <sup>1</sup> / <sub>2</sub>                                                                                            | 18.455   | .085      | 468.76      | 2.16      |  |
| AS-467                  | 19                                                                                                                        | 18.955   | .090      | 481.46      | 2.29      |  |
| AS-468                  | 19 <sup>1</sup> / <sub>2</sub>                                                                                            | 19.455   | .090      | 494.16      | 2.29      |  |
| AS-469                  | 20                                                                                                                        | 19.955   | .095      | 506.86      | 2.41      |  |
| AS-470                  | 21                                                                                                                        | 20.955   | .095      | 532.26      | 2.41      |  |
| AS-471                  | 22                                                                                                                        | 21.955   | .100      | 557.66      | 2.54      |  |
| AS-472                  | 23                                                                                                                        | 22.940   | .105      | 582.68      | 2.67      |  |
| AS-473                  | 24                                                                                                                        | 23.940   | .110      | 608.08      | 2.79      |  |
| AS-474                  | 25                                                                                                                        | 24.940   | .115      | 633.48      | 2.92      |  |
| AS-475                  | 26                                                                                                                        | 25.940   | .120      | 658.88      | 3.05      |  |

#### SIZES FOR STRAIGHT THREAD TUBE FITTINGS

| STANDARD                         |                    | INC       | CHES  |           | F                                                                                      | tional         |                    | MILLIM         | ETERS   | 5        |
|----------------------------------|--------------------|-----------|-------|-----------|----------------------------------------------------------------------------------------|----------------|--------------------|----------------|---------|----------|
| SIZE SERIES<br>NUMBER<br>(AS568) | Inside<br>Diameter | Tolerance | Secti | Tolerance | (11                                                                                    | nch)<br>erence | Inside<br>Diameter | Tolerance<br>± | Section | olerance |
| (A3308)                          | Diameter           | <u>T</u>  | Secti | 011 ±     | I Kele                                                                                 | rence          | Diameter           | 2.             | Jecti   | 011      |
| AS-901                           | .185               | .005      | .056  | .003      | sizes reflect<br>of o-ring.                                                            | 3/32           | 4.70               | .13            | 1.42    | .08      |
| AS-902                           | .239               | .005      | .064  | .003      | g.fe                                                                                   | 1/8            | 6.07               | .13            | 1.63    | .08      |
| AS-903                           | .301               | .005      | .064  | .003      | 9.0                                                                                    | 3/16           | 7.65               | .13            | 1.63    | .08      |
| AS-904                           | .351               | .005      | .072  | .003      | 0-1-0                                                                                  | 1/4            | 8.92               | .13            | 1.83    | .08      |
| AS-905                           | .414               | .005      | .072  | .003      |                                                                                        | 5/16           | 10.52              | .13            | 1.83    | .08      |
| AS-906                           | .468               | .005      | .078  | .003      | ting                                                                                   | 3/8            | 11.89              | .13            | 1.98    | .08      |
| AS-907                           | .530               | .007      | .082  | .003      | isi =                                                                                  | 7/16           | 13.46              | .18            | 2.08    | .08      |
| AS-908                           | .644               | .009      | .087  | .003      | be                                                                                     | 1/2            | 16.36              | .23            | 2.21    | .08      |
| AS-909                           | .706               | .009      | .097  | .003      | 5 =                                                                                    | 9/16           | 17.93              | .23            | 2.46    | .08      |
| AS-910                           | .755               | .009      | .097  | .003      | Fractional dimensions listed for tube fitting outside diameter of tube, not dimensions | 5/8            | 19.18              | .23            | 2.46    | .08      |
| AS-911                           | .863               | .009      | .116  | .004      | e, n                                                                                   | 11/16          | 21.92              | .23            | 2.95    | .10      |
| AS-912                           | .924               | .009      | .116  | .004      | lis                                                                                    | 3/4            | 23.47              | .23            | 2.95    | .10      |
| AS-913                           | .986               | .010      | .116  | .004      | ins<br>f tu                                                                            | 13/16          | 25.04              | .25            | 2.95    | .10      |
| AS-914                           | 1.047              | .010      | .116  | .004      | Sio                                                                                    | 7/8            | 26.59              | .25            | 2.95    | .10      |
| AS-916                           | 1.171              | .010      | .116  | .004      | eter                                                                                   | 1              | 29.74              | .25            | 2.95    | .10      |
| AS-918                           | 1.355              | .012      | .116  | .004      | din                                                                                    | 11/8           | 34.42              | .30            | 2.95    | .10      |
| AS-920                           | 1.475              | .014      | .118  | .004      | ਰ ਕੁ                                                                                   | 11/4           | 37.47              | .36            | 3.00    | .10      |
| AS-924                           | 1.720              | .014      | .118  | .004      | de                                                                                     | 11/2           | 43.69              | .36            | 3.00    | .10      |
| AS-928                           | 2.090              | .018      | .118  | .004      | tsic                                                                                   | 13/4           | 53.09              | .46            | 3.00    | .10      |
| AS-932                           | 2.337              | .018      | .118  | .004      | Fra                                                                                    | 2              | 59.36              | .46            | 3.00    | .10      |

<sup>\*</sup>Trademarks: Hypalon, Neoprene, Viton—E.I. du Pont de Nemours & Co. Fluorel—Minnesota Mining & Mfg. Co.